Field-effect Transistor (epo) Patents (Class 257/E29.242)

  • Patent number: 8558225
    Abstract: A method for fabricating a liquid crystal display (LCD) device include: forming a gate electrode on a substrate; forming a gate insulating layer on the substrate; forming a primary active layer having a tapered portion to a side of a channel region of the primary active layer on the gate insulating layer, and forming source and drain electrodes on the primary active layer; and forming a secondary active layer made of amorphous zinc oxide-based semiconductor on the source and drain electrodes and being in contact with the tapered portion of the primary active layer, wherein the primary active layer is etched at a low selectivity during a wet etching of the source and drain electrodes, to have the tapered portion.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 15, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Jong-Uk Bae, Hyun-Sik Seo, Yong-Yub Kim
  • Patent number: 8557675
    Abstract: Disclosed herein are methods of patterning features in a structure, such as a layer of material used in forming integrated circuit devices or in a semiconducting substrate, using a multiple sidewall image transfer technique. In one example, the method includes forming a first mandrel above a structure, forming a plurality of first spacers adjacent the first mandrel, forming a plurality of second mandrels adjacent one of the first spacers, and forming a plurality of second spacers adjacent one of the second mandrels. The method also includes performing at least one etching process to selectively remove the first mandrel and the second mandrels relative to the first spacers and the second spacers and thereby define an etch mask comprised of the first spacers and the second spacer and performing at least one etching process through the etch mask on the structure to define a plurality of features in the structure.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 15, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Nicholas V. LiCausi
  • Publication number: 20130264612
    Abstract: A method for forming a semiconductor device includes forming a gate stack on a monocrystalline substrate. A surface of the substrate adjacent to the gate stack and below a portion of the gate stack is amorphorized. The surface is etched to selectively remove a thickness of amorphorized portions to form undercuts below the gate stack. A layer is epitaxially grown in the thickness and the undercuts to form an extension region for the semiconductor device. Devices are also provided.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Isaac Lauer, Effendi Leobandung, Ghavam G. Shahidi
  • Publication number: 20130248949
    Abstract: A method of fabricating an integrated circuit includes depositing a first dielectric material onto a semiconductor surface of a substrate having a gate stack thereon including a gate electrode on a gate dielectric. The first dielectric material is etched to form sidewall spacers on sidewalls of the gate stack. A top surface of the first dielectric material is chemically converted to a second dielectric material by adding at least one element to provide surface converted sidewall spacers. The second dielectric material is chemically bonded across a transition region to the first dielectric material.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: BRIAN K. KIRKPATRICK, AMITABH JAIN
  • Patent number: 8541848
    Abstract: To limit or prevent current crowding, various HV-MOSFET embodiments include a current diversion region disposed near a drain region of an HV-MOSFET and near an upper surface of the semiconductor substrate. In some embodiments, the current diversion region is disposed near a field plate of the HV-MOSFET, wherein the field plate can also help to reduce or “smooth” electric fields near the drain to help limit current crowding. In some embodiments, the current diversion region is a p-doped, n-doped, or intrinsic region that is at a floating voltage potential. This current diversion region can push current deeper into the substrate of the HV-MOSFET (relative to conventional HV-MOSFETs), thereby reducing current crowding during ESD events. By reducing current crowding, the current diversion region makes the HV-MOSFETs disclosed herein more impervious to ESD events and, therefore, more reliable in real-world applications.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: September 24, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Pei Huang, Yi-Feng Chang, Jam-Wem Lee
  • Publication number: 20130240836
    Abstract: A fin field effect transistor (FinFET) device is provided. The FinFET includes a superlattice layer and a strained layer. The superlattice layer is supported by a substrate. The strained layer is disposed on the superlattice layer and provides a gate channel. The gate channel is stressed by the superlattice layer. In an embodiment, the superlattice layer is formed by stacking different silicon germanium alloys or stacking other III-V semiconductor materials.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jing Lee, You-Ru Lin, Cheng-Tien Wan, Cheng-Hsien Wu, Chih-Hsin Ko
  • Patent number: 8536043
    Abstract: Embodiments of this invention provide a method to fabricate an electrical contact. The method includes providing a substrate of a compound Group III-V semiconductor material having at least one electrically conducting doped region adjacent to a surface of the substrate. The method further includes fabricating the electrical contact to the at least one electrically conducting doped region by depositing a single crystal layer of germanium over the surface of the substrate so as to at least partially overlie the at least one electrically conducting doped region, converting the single crystal layer of germanium into a layer of amorphous germanium by implanting a dopant, forming a metal layer over exposed surfaces of the amorphous germanium layer, and performing a metal-induced crystallization (MIC) process on the amorphous germanium layer having the overlying metal layer to convert the amorphous germanium layer to a crystalline germanium layer and to activate the implanted dopant.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jeehwan Kim, Jin-Hong Park, Devendra Sadana, Kuen-Ting Shiu
  • Patent number: 8536632
    Abstract: Embodiments of the invention provide a relatively uniform width fin in a Fin Field Effect Transistors (FinFETs) and apparatus and methods for forming the same. A fin structure may be formed such that the surface of a sidewall portion of the fin structure is normal to a first crystallographic direction. Tapered regions at the end of the fin structure may be normal to a second crystal direction. A crystallographic dependent etch may be performed on the fin structure. The crystallographic dependent etch may remove material from portions of the fin normal to the second crystal direction relatively faster, thereby resulting in a relatively uniform width fin structure.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Louis L. Hsu, Jack A. Mandelman, John Edward Sheets, II
  • Patent number: 8536648
    Abstract: In an embodiment of the invention, a semiconductor device includes a first region having a first doping type, a channel region having the first doping type disposed in the first region, and a retrograde well having a second doping type. The second doping type is opposite to the first doping type. The retrograde well has a shallower layer with a first peak doping and a deeper layer with a second peak doping higher than the first peak doping. The device further includes a drain region having the second doping type over the retrograde well. An extended drain region is disposed in the retrograde well, and couples the channel region with the drain region. An isolation region is disposed between a gate overlap region of the extended drain region and the drain region. A length of the drain region is greater than a depth of the isolation region.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 17, 2013
    Assignees: Infineon Technologies AG, Indian Institute of Technology Bombay
    Inventors: Mayank Shrivastava, Cornelius Christian Russ, Harald Gossner, Ramgopal Rao
  • Patent number: 8536630
    Abstract: In an embodiment, a method of fabricating a transistor device comprises: providing a semiconductor topography comprising a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers; anisotropically etching exposed regions of the semiconductor substrate on opposite sides of the dielectric spacers to form recessed regions in the substrate; oxidizing exposed surfaces of the substrate in the recessed regions to form an oxide thereon; removing the oxide from bottoms of the recessed regions while retaining the oxide upon sidewalls of the recessed regions; and isotropically etching the substrate such that the recessed regions undercut the pair of dielectric spacers.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Xuefeng Hua, Rangarajan Jagannathan, Stefan Schmitz
  • Patent number: 8536629
    Abstract: A method for manufacturing a semiconductor device, includes: forming an insulating film containing silicon, oxygen and carbon on at least one of a first substrate and a second substrate; and bonding the first substrate and the second substrate together, with the insulating film interposed therebetween. There can be provided a method capable of manufacturing a semiconductor device having high element density, high performance and high reliability, with high yield.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: September 17, 2013
    Assignee: NEC Corporation
    Inventors: Munehiro Tada, Hiromitsu Hada
  • Publication number: 20130234217
    Abstract: A device includes a semiconductor substrate, a gate stack over the semiconductor substrate, and a stressor region having at least a portion in the semiconductor substrate and adjacent to the gate stack. The stressor region includes a first stressor region having a first p-type impurity concentration, a second stressor region over the first stressor region, wherein the second stressor region has a second p-type impurity concentration, and a third stressor region over the second stressor region. The third stressor region has a third p-type impurity concentration. The second p-type impurity concentration is lower than the first and the third p-type impurity concentrations.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Patent number: 8530884
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
  • Publication number: 20130228826
    Abstract: A device includes a semiconductor substrate, a first Metal-Oxide-Semiconductor (MOS) device, and a second MOS device of a same conductivity as the first MOS device. The first MOS device includes a first gate stack over the semiconductor substrate, and a first stressor adjacent to the first gate stack and extending into the semiconductor substrate. The first stressor and the first gate stack have a first distance. The second MOS device includes a second gate stack over the semiconductor substrate, and a second stressor adjacent to the second gate stack and extending into the semiconductor substrate. The second stressor and the second gate stack have a second distance greater than the first distance.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jelin Wang, Ching-Chen Hao, Yi-Huang Wu, Meng Yi Sun
  • Publication number: 20130228831
    Abstract: A semiconductor structure includes a substrate having a first conductive type, a well having a second conductive type formed in the substrate, a first doped region and a second doped region formed in the well, a field oxide, a first dielectric layer and a second dielectric layer. The field oxide is formed on a surface region of the well and between the first doped region and the second doped region. The first dielectric layer is formed on the surface region of the well and covers an edge portion of the field oxide. The first dielectric layer has a first thickness. The second dielectric layer is formed on the surface region of the well. The second dielectric layer has a second thickness smaller than the first thickness.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Yu-Hsien Chin, Chih-Chia Hsu, Yin-Fu Huang
  • Patent number: 8525243
    Abstract: A semiconductor device has a gate multiple doping regions on both sides of the gate. The gate can be shared by a transistor and a capacitor.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 3, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Patent number: 8525237
    Abstract: Grafting M13 bacteriophage into an array of poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires generated hybrids of conducting polymers and replicable genetic packages (rgps) such as viruses. The incorporation of rgps into the polymeric backbone of PEDOT occurs during electropolymerization via lithographically patterned nanowire electrodeposition (LPNE). The resultant arrays of rgps-PEDOT nanowires enable real-time, reagent-free electrochemical biosensing of analytes in physiologically relevant buffers.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: September 3, 2013
    Assignee: The Regents of the University of California
    Inventors: Gregory A. Weiss, Reginald M. Penner, Jessica A. Arter, David K. Taggart, Keith C. Donavan
  • Patent number: 8525276
    Abstract: The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 3, 2013
    Assignee: The Board of Trustees of the University of California
    Inventors: Paul A. Tchertchian, Clark J. Wagner, J. Gary Eden
  • Patent number: 8525228
    Abstract: Semiconductor-on-insulator (XOI) structures and methods of fabricating XOI structures are provided. Single-crystalline semiconductor is grown on a source substrate, patterned, and transferred onto a target substrate, such as a Si/SiO2 substrate, thereby assembling an XOI substrate. The transfer process can be conducted through a stamping method or a bonding method. Multiple transfers can be carried out to form heterogenous compound semiconductor devices. The single-crystalline semiconductor can be II-IV or III-V compound semiconductor, such as InAs. A thermal oxide layer can be grown on the patterned single crystalline semiconductor, providing improved electrical characteristics and interface properties. In addition, strain tuning is accomplished via a capping layer formed on the single-crystalline semiconductor before transferring the single-crystalline semiconductor to the target substrate.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 3, 2013
    Assignee: The Regents of the University of California
    Inventors: Ali Javey, Hyunhyub Ko, Kuniharu Takei
  • Patent number: 8525268
    Abstract: The present technology discloses a vertical discrete device with gate and drain electrodes on the same surface and method for making the same. The vertical discrete device comprises a deep gate contact that couples the buried gate to a gate electrode which is formed on the same surface as the drain electrode. The discrete device according to the present technology can be used in co-packaging power management applications and the source electrode of the discrete device may be attached to the leadframe of the package.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Monolothic Power Systems, Inc.
    Inventor: Donald R. Disney
  • Patent number: 8519447
    Abstract: An ion sensitive sensor having an EIS structure, including: a semiconductor substrate, on which a layer of a substrate oxides is produced; an adapting or matching layer, which is prepared on the substrate oxide; a chemically stable, intermediate insulator, which is deposited on the adapting or matching layer; and an ion sensitive, sensor layer, which is applied on the intermediate insulator. The adapting or matching layer differs from the intermediate insulator and the substrate oxide in its chemical composition and/or structure. The adapting or matching layer and the ion sensitive, sensor layer each have an electrical conductivity greater than that of the intermediate insulator. There is an electrically conductive connection between the adapting or matching layer and the ion sensitive, sensor layer.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 27, 2013
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventor: Hendrik Zeun
  • Patent number: 8513714
    Abstract: The present invention relates to a semiconductor component which comprises at least one electric contact surface for the electric contacting of a semiconductor region (1) with a metal material (3). To this end, the electric contact surface is configured by a surface of a semiconductor layer that is structured in terms of the depth thereof and preferably silicidated. By configuring a three-dimensional surface topography of the semiconductor layer, an enlargement of the electric contact surface is achieved, without enlarging the surface required for the semiconductor component and without the use of additional materials. In this way, the invention can advantageously be used to reduce parasitic contact resistance in semiconductor components which are produced using standard CMOS processes.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: August 20, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Christian Kampen, Alexander Burenkov
  • Publication number: 20130207166
    Abstract: A semiconductor device system, structure and method of manufacture of a source/drain with SiGe stressor material to address effects due to dopant out-diffusion are disclosed. In an embodiment, a semiconductor substrate is provided with a gate structure, and recesses for source and drain are formed on opposing sides of the gate structure. Doped stressors are embedded into the recessed source and drain regions, and a plurality of layers of undoped stressor, lightly doped stressor, highly doped stressor, and a cap layer are formed in an in-situ epitaxial process. In another embodiment the doped stressor material is boron doped epitaxial SiGe. In an alternative embodiment an additional layer of undoped stressor material is formed.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsuing Chen, Ling-Sung Wang, Chi-Yen Lin
  • Patent number: 8507948
    Abstract: A junctionless accumulation-mode (JAM) semiconductive device is isolated from a semiconductive substrate by a reverse-bias band below a prominent feature of a JAM semiconductive body. Processes of making the JAM device include implantation and epitaxy.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Titash Rakshit, Sivakumar P. Mudanai
  • Patent number: 8507919
    Abstract: A field-effect transistor (FET) in which a gate electrode is located between a source electrode formed on one side of the gate electrode and a drain electrode formed on the other side, a source ohmic contact is formed under the source electrode and a drain ohmic contact is formed under the drain electrode. In the FET, the rise in the channel temperature is suppressed, the parasitic capacitance with a substrate is decreased, and the temperature dependence of drain efficiency is reduced, so that highly efficient operation can be achieved at high temperatures. The drain electrode is divided into a plurality of drain sub-electrodes spaced from each other and an insulating region is formed between the drain ohmic contacts formed under the drain sub-electrodes.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 13, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kohji Ishikura
  • Patent number: 8507989
    Abstract: An extremely thin SOI MOSFET device on an SOI substrate is provided with a back gate layer on a Si substrate superimposed by a thin BOX layer; an extremely thin SOI layer (ETSOI) on top of the thin BOX layer; and an FET device on the ETSOI layer having a gate stack insulated by spacers. The thin BOX is formed under the ETSOI channel, and is provided with a thicker dielectric under source and drain to reduce the source/drain to back gate parasitic capacitance. The thicker dielectric portion is self-aligned with the gate. A void within the thicker dielectric portion is formed under the source/drain region. The back gate is determined by a region of semiconductor damaged by implantation, and the formation of an insulating layer by lateral etch and back filling with dielectric.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machine Corporation
    Inventors: Ali Khakifirooz, Kangguo Cheng, Bruce B. Doris
  • Patent number: 8502288
    Abstract: A semiconductor structure including a substrate and a gate structure disposed on the substrate is disclosed. The gate structure includes a gate dielectric layer disposed on the substrate, a gate material layer disposed on the gate dielectric layer and an outer spacer with a rectangular cross section. The top surface of the outer spacer is lower than the top surface of the gate material layer.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 6, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Ted Ming-Lang Guo, Chin-Cheng Chien, Shu-Yen Chan, Ling-Chun Chou, Tsung-Hung Chang, Chun-Yuan Wu
  • Patent number: 8502272
    Abstract: A method of fabricating Group III-V semiconductor metal oxide semiconductor (MOS) and III-V MOS devices are described.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: August 6, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Thomas Edward Dungan, Philip Gene Nikkel
  • Publication number: 20130193411
    Abstract: A method of manufacturing a graphene device may include forming a device portion including a graphene layer on the first substrate; attaching a second substrate on the device portion of the first substrate; and removing the first substrate. The removing of the first substrate may include etching a sacrificial layer between the first substrate and the graphene layer. After removing the first substrate, a third substrate may be attached on the device portion. After attaching the third substrate, the second substrate may be removed.
    Type: Application
    Filed: July 11, 2012
    Publication date: August 1, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang-seung Lee, Joo-ho Lee, Yong-sung Kim, Chang-youl Moon
  • Publication number: 20130187205
    Abstract: Disclosed is a semiconductor article which includes a semiconductor substrate; a gate structure having a spacer adjacent to a conducting material of the gate structure wherein a corner of the spacer is faceted to create a faceted space between the faceted spacer and the semiconductor substrate; and a raised source/drain adjacent to the gate structure, the raised source/drain filling the faceted space and having a surface parallel to the semiconductor substrate. Also disclosed is a method of making the semiconductor article.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: Internationa Business Machines Corporation
    Inventors: THOMAS N. ADAM, KANGGUO CHENG, ALI KHAKIFIROOZ, ALEXANDER REZNICEK
  • Publication number: 20130187203
    Abstract: Gate to contact shorts are reduced by forming dielectric caps in replaced gate structures. Embodiments include forming a replaced gate structure on a substrate, the replaced gate structure including an ILD having a cavity, a first metal on a top surface of the ILD and lining the cavity, and a second metal on the first metal and filling the cavity, planarizing the first and second metals, forming an oxide on the second metal, removing the oxide, recessing the first and second metals in the cavity, forming a recess, and filling the recess with a dielectric material. Embodiments further include dielectric caps having vertical sidewalls, a trapezoidal shape, a T-shape, or a Y-shape.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicants: International Business Machines Corporation, GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Ruilong XIE, Balasubramanian Pranatharthi Haran, David V. Horak, Su Chen Fan
  • Publication number: 20130187204
    Abstract: There is provided a high frequency semiconductor switch for improving insertion loss characteristics and harmonic characteristics by providing good voltage distribution in a gate wiring. The field effect transistor includes a source wiring electrically connected to a source region formed on a substrate and extending unidirectionally; a drain wiring electrically connected to a drain region formed on the substrate and extending in parallel with the source wiring; a gate having a parallel portion extending between the source wiring and the drain wiring in approximately parallel with the source wiring and the drain wiring; a gate wiring applying voltage to the gate; and a gate via electrically connecting the gate to the gate wiring, the parallel portion including two ends and formed with a path applying voltage to each of the two ends from the gate via.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Inventor: Tsuyoshi SUGIURA
  • Publication number: 20130187229
    Abstract: A device includes a semiconductor substrate. A gate stack on the semiconductor substrate includes a gate dielectric layer and a gate conductor layer. Low-k spacers are adjacent to the gate dielectric layer. Raised source/drain (RSD) regions are adjacent to the low-k spacers. The low-k spacers are embedded in an ILD on the RSD regions.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: KANGGUO CHENG, Bruce B. Doris, Ali Khakifirooz, Douglas C. La Tulipe
  • Publication number: 20130181263
    Abstract: Disclosed herein are various methods of forming isolation structures on FinFETs and other semiconductor devices, and the resulting devices that have such isolation structures. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define a fin for a FinFET device, forming a layer of insulating material in the trenches, wherein the layer of insulating material covers a lower portion of the fin but not an upper portion of the fin, forming a protective material on the upper portion of the fin, and performing a heating process in an oxidizing ambient to form a thermal oxide region on the covered lower portion of the fin.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Xiuyu Cai, Ruilong Xie, Jin Cho, John Iacoponi
  • Patent number: 8487296
    Abstract: Methods, devices, systems and/or articles related to techniques for forming a graphene film on a substrate, and the resulting graphene layers and graphenated substrates are generally disclosed. Some example techniques may be embodied as methods or processes for forming graphene. Some other example techniques may be embodied as devices employed to manipulate, treat, or otherwise process substrates, graphite, graphene and/or graphenated substrates as described herein. Graphene layers and graphenated substrates produced by the various techniques and devices provided herein are also disclosed.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 16, 2013
    Assignee: New Jersey Institute of Technology
    Inventors: Haim Grebel, Amrita Banerjee
  • Patent number: 8487378
    Abstract: The present disclosure discloses a method of forming a semiconductor layer on a substrate. The method includes patterning the semiconductor layer into a fin structure. The method includes forming a gate dielectric layer and a gate electrode layer over the fin structure. The method includes patterning the gate dielectric layer and the gate electrode layer to form a gate structure in a manner so that the gate structure wraps around a portion of the fin structure. The method includes performing a plurality of implantation processes to form source/drain regions in the fin structure. The plurality of implantation processes are carried out in a manner so that a doping profile across the fin structure is non-uniform, and a first region of the portion of the fin structure that is wrapped around by the gate structure has a lower doping concentration level than other regions of the fin structure.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: July 16, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ken-Ichi Goto, Zhiqiang Wu
  • Publication number: 20130175630
    Abstract: A transistor includes a semiconductor layer and a gate structure located on the semiconductor layer. The gate structure includes a first dielectric layer. The first dielectric layer includes a doped region and an undoped region below the doped region. A second dielectric layer is located on the first dielectric layer, and a first metal nitride layer is located on the second dielectric layer. The doped region of the first dielectric layer comprises dopants from the second dielectric layer. Source and drain regions in the semiconductor layer are located on opposite sides of the gate structure.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Applicant: International Business Machines Corporation
    Inventors: Takashi ANDO, Eduard A. Cartier, Unoh Kwon, Vijay Narayanan
  • Patent number: 8482085
    Abstract: Power MOS device of the type comprising a plurality of elementary power MOS transistors having respective gate structures and comprising a gate oxide with double thickness having a thick central part and lateral portions of reduced thickness. Such device exhibiting gate structures comprising first gate conductive portions overlapped onto said lateral portions of reduced thickness to define, for the elementary MOS transistors, the gate electrodes, as well as a conductive structure or mesh. Such conductive structure comprising a plurality of second conductive portions overlapped onto the thick central part of gate oxide and interconnected to each other and to the first gate conductive portions by means of a plurality of conducive bridges.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 9, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Magri, Ferruccio Frisina, Giuseppe Ferla
  • Patent number: 8481391
    Abstract: A process for manufacturing a stress-providing structure is applied to the fabrication of a semiconductor device. Firstly, a substrate with a channel structure is provided. A silicon nitride layer is formed over the substrate by chemical vapor deposition in a halogen-containing environment. An etching process is performed to partially remove the silicon nitride layer to expose a portion of a surface of the substrate beside the channel structure. The exposed surface of the substrate is etched to form a recess in the substrate. Then, the substrate is thermally treated at a temperature between 750° C. and 820° C. After the substrate is thermally treated, a stress-providing material is filled in the recess to form a stress-providing structure within the recess. The semiconductor device includes a substrate, a recess and a stress-providing structure. The recess has a round inner surface. The stress-providing structure has a round outer surface.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 9, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Ching-Hong Jiang, Ching-I Li, Shu-Yen Chan, Chin-Cheng Chien
  • Publication number: 20130168770
    Abstract: A high-voltage oxide transistor includes a substrate; a channel layer disposed on the substrate; a gate electrode disposed on the substrate to correspond to the channel layer; a source contacting a first side of the channel layer; and a drain contacting a second side of the channel layer, wherein the channel layer includes a plurality of oxide layers, and none of the plurality of oxide layers include silicon. The gate electrode may be disposed on or under the channel layer. Otherwise, the gate electrodes may be disposed respectively on and under the channel layer.
    Type: Application
    Filed: July 12, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-hun Jeon, Chang-jung Kim, I-hun Song
  • Publication number: 20130168780
    Abstract: Oxygen scavenging material embedded in an isolation structure provides improved protection of high dielectric constant (Hi-K) materials from oxygen contamination while avoiding alteration of work function and switching threshold shift in transistors including such Hi-K materials.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 4, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher Vincent Baiocco, Michael P. Chudzik, Deleep R. Nair, Jay M. Shah
  • Patent number: 8476689
    Abstract: A low cost IC solution is disclosed in accordance with an embodiment to provide Super CMOS microelectronics macros. Hereinafter, the Super CMOS or Schottky CMOS all refer to SCMOS. The SCMOS device solutions with a niche circuit element, the complementary low threshold Schottky barrier diode pairs (SBD) made by selected metal barrier contacts (Co/Ti) to P- and N- Si beds of the CMOS transistors. A DTL like new circuit topology and designed wide contents of broad product libraries, which used the integrated SBD and transistors (BJT, CMOS, and Flash versions) as basic components. The macros are composed of diodes that are selectively attached to the diffusion bed of the transistors, configuring them to form generic logic gates, memory cores, and analog functional blocks from simple to the complicated, from discrete components to all grades of VLSI chips. Solar photon voltaic electricity conversion and bio-lab-on-a-chip are two newly extended fields of the SCMOS IC applications.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 2, 2013
    Inventor: Augustine Wei-Chun Chang
  • Publication number: 20130161708
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure includes a substrate, a die and a medium. The substrate has an upper substrate surface. The substrate has a trench extended downward from the upper substrate surface. The trench has a side trench surface. The die is in the trench. The die has a lower die surface and a side die surface. The lower die surface is below the upper substrate surface. A part of the trench between the side trench surface and the side die surface is filled with the medium.
    Type: Application
    Filed: September 7, 2012
    Publication date: June 27, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Tsan Peng, Shih-Tung Cheng, Edward Yi Chang, Po-Chien Chou, Shyr-Long Jeng, Chia-Hua Chang, Tsung-Lin Chen, Jian-Feng Tsai
  • Publication number: 20130153903
    Abstract: An ambipolar transistor device structure suitable for use in an integrated circuit is disclosed. An electron blocking layer or a hole blocking layer is interposed between a source/drain and an ambipolar active layer. Therefore, a unipolar device electric property may be extracted from the ambipolar active layer, which may be suitably applied to the design of a logic circuit. The manufacturing method of the disclosure is simple, only needing one patterning step, so as to effectively improve the performance of the ambipolar device.
    Type: Application
    Filed: April 20, 2012
    Publication date: June 20, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chao-Feng Sung, Yen-Min Hsieh
  • Patent number: 8466516
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate of a first conductivity type, an element isolation insulator, a source layer of a second conductivity type, a drain layer of the second conductivity type, a contact layer of the first conductivity type and a gate electrode. The element isolation insulator is formed on the semiconductor substrate. The source layer is formed on the semiconductor substrate and is in contact with a side surface of the element isolation insulator. The drain layer is formed on the semiconductor substrate, is in contact with the side surface, and is spaced from the source layer. The contact layer is formed between the source layer and the drain layer. The gate electrode is provided on the element isolation insulator along the side surface.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 18, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutoshi Nakamura, Norio Yasuhara
  • Publication number: 20130146949
    Abstract: The embodiments of processes and structures described above provide mechanisms for improving mobility of carriers. The dislocations in the source and drain regions and the strain created by the doped epitaxial materials next to the channel region of a transistor both contribute to the strain in the channel region. As a result, the device performance is improved.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung TSAI, Tsan-Chun WANG, Su-Hao LIU, Tsz-Mei KWOK, Chii-Meng WU
  • Publication number: 20130146943
    Abstract: Methods and apparatuses are disclosed for providing heterostructure field effect transistors (HFETs) with high-quality gate dielectric and field plate dielectric. The gate dielectric and field plate dielectric are in situ deposited on a semiconductor surface. The location of the gate electrode may be defined by etching a first pattern in the field plate dielectric and using the gate dielectric as an etch-stop. Alternatively, an additional etch-stop layer may be in situ deposited between the gate dielectric and the field plate dielectric. After etching the first pattern, a conductive material may be deposited and patterned to define the gate electrode. Source and drain electrodes that electrically contact the semiconductor surface are formed on opposite sides of the gate electrode.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Inventors: John P. EDWARDS, Linlin Liu
  • Patent number: 8461634
    Abstract: An integrated circuit device and method for manufacturing the same are disclosed. An exemplary device includes a semiconductor substrate having a substrate surface; a trench isolation structure disposed in the semiconductor substrate, the trench isolation structure having a trench isolation structure surface that is substantially planar to the substrate surface; and a gate feature disposed over the semiconductor substrate, wherein the gate feature includes a portion that extends from the substrate surface to a depth in the trench isolation structure, the portion being defined by a trench isolation structure sidewall and a semiconductor substrate sidewall, such that the portion tapers from a first width at the substrate surface to a second width at the depth, the first width being greater than the second width.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 11, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lie-Yong Yang, Sheng Chiang Hung, Kian-Long Lim, Ping-Wei Wang
  • Publication number: 20130134391
    Abstract: A method and an apparatus for doping a graphene and nanotube thin-film transistor field-effect transistor device to decrease contact resistance with a metal electrode. The method includes selectively applying a dopant to a metal contact region of a graphene and nanotube field-effect transistor device to decrease the contact resistance of the field-effect transistor device.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Bhupesh Chandra, George S. Tulevski, Fengnian Xia
  • Publication number: 20130134486
    Abstract: Disclosed herein are methods of patterning features in a structure, such as a layer of material used in forming integrated circuit devices or in a semiconducting substrate, using a multiple sidewall image transfer technique. In one example, the method includes forming a first mandrel above a structure, forming a plurality of first spacers adjacent the first mandrel, forming a plurality of second mandrels adjacent one of the first spacers, and forming a plurality of second spacers adjacent one of the second mandrels. The method also includes performing at least one etching process to selectively remove the first mandrel and the second mandrels relative to the first spacers and the second spacers and thereby define an etch mask comprised of the first spacers and the second spacer and performing at least one etching process through the etch mask on the structure to define a plurality of features in the structure.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Nicholas V. LiCausi