Electrolytic Patents (Class 204/194)
  • Patent number: 7780822
    Abstract: An electrolytic cell consisting of two semi-shells and encompassing mainly the inlet and outlet devices, components for the flow control, a membrane as well as anode and cathode.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: August 24, 2010
    Assignee: UHDENORA S.p.A.
    Inventors: Roland Beckmann, Karl Heinz Dulle, Frank Funck, Randolf Kiefer, Peter Woltering
  • Patent number: 7727374
    Abstract: Apparatuses and methods for removing carbon dioxide and other pollutants from a gas stream are provided. The methods include obtaining hydroxide in an aqueous mixture, and mixing the hydroxide with the gas stream to produce carbonate and/or bicarbonate. Some of the apparatuses of the present invention comprise an electrolysis chamber for providing hydroxide and mixing equipment for mixing the hydroxide with a gas stream including carbon dioxide to form an admixture including carbonate and/or bicarbonate.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: June 1, 2010
    Assignee: Skyonic Corporation
    Inventor: Joe David Jones
  • Patent number: 7713394
    Abstract: A sample plate assembly for an electrophoresis apparatus including a tray at a sample supply portion of a capillary array, an adapter for the tray, a sample plate mounted on the adapter, a septer mounted on the sample plate and a septer holder mounted on the septer. Thereby, many number of samples can be automatically supplied to capillaries in a multi capillary array.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: May 11, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Shuhei Yamamoto, Hiromi Yamashita, Masatoshi Kitagawa
  • Patent number: 7708969
    Abstract: In a method and an apparatus for forming metal oxide on a substrate, a source gas including metal precursor flows along a surface of the substrate to form a metal precursor layer on the substrate. An oxidizing gas including ozone flows along a surface of the metal precursor layer to oxidize the metal precursor layer so that the metal oxide is formed on the substrate. A radio frequency power is applied to the oxidizing gas flowing along the surface of the metal precursor layer to accelerate a reaction between the metal precursor layer and the oxidizing gas. Acceleration of the oxidation reaction may improve electrical characteristics and uniformity of the metal oxide.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Yong-Min Yoo, Min-Woo Song, Dae-Youn Kim, Young-Hoon Kim, Weon-Hong Kim, Jung-Min Park, Sun-Mi Song
  • Patent number: 7695597
    Abstract: A conductive planarization assembly for use in electrochemical mechanical planarization is provided. A conductive planarization assembly in accordance with an exemplary embodiment of the invention comprises a first insulating member and a second insulating member overlying the first insulating member and having a plurality of first holes. A conductive member is interposed between the first insulating member and the second insulating member and is electrically coupled to an external circuit. The conductive member comprises a plurality of cathode regions that are exposed by the plurality of first holes of the second insulating member.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 13, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: John Drewery, Francisco Juarez, Henner Meinhold
  • Patent number: 7678245
    Abstract: Embodiments of the invention generally provide a method and apparatus for processing a substrate in an electrochemical mechanical planarizing system. In one embodiment, a cell for polishing a substrate includes a processing pad disposed on a top surface of a platen assembly. A plurality of conductive elements are arranged in a spaced-apart relation across the upper planarizing surface and adapted to bias the substrate relative to an electrode disposed between the pad and the platen assembly. A plurality of passages are formed through the platen assembly between the top surface and a plenum defined within the platen assembly. In another embodiment, a system is provided having a bulk processing cell and a residual processing cell. The residual processing cell includes a biased conductive planarizing surface. In further embodiments, the conductive element is protected from attack by process chemistries.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: March 16, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yan Wang, Siew Neo, Feng Liu, Stan D. Tsai, Yongqi Hu, Alain Duboust, Antoine Manens, Ralph M. Wadensweiler, Rashid Mavliev, Liang-Yuh Chen, Donald J. K. Olgado, Paul D. Butterfield, Ming-Kuei Tseng, Shou-Sung Chang, Lizhong Sun
  • Patent number: 7670468
    Abstract: Embodiments of the invention generally provide a method and apparatus for processing a substrate in an electrochemical mechanical planarizing system. In one embodiment, a contact assembly for electrochemically processing a substrate includes a housing having a ball disposed in a passage formed through the housing. The ball is adapted to extend partially from the housing to contact the substrate during processing. The housing includes a fluid inlet that is positioned to cause fluid, entering the housing through the inlet, to sweep the entire passage. In another embodiment, a method for electrochemically processing includes flowing a processing fluid through a passage retaining a conductive element. The flow sweeps the entire passage of the housing. A first electrical bias is applied to the conductive element in contact with the substrate relative an electrode electrically coupled to the substrate by the processing fluid.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: March 2, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Rashid Mavliev
  • Publication number: 20100045042
    Abstract: A system, apparatus and method for generating electricity from renewable geothermal, wind, and solar energy sources includes a heat balancer for supplementing and regulating the heat energy fed to a turbine generator; a hydrogen-fired boiler for supplying supplementary heat; and an injection manifold for metering controlled amounts of superheated combustible gas into the working fluids to optimize efficiency. Wind or solar power may be converted to hydrogen in an electrolysis unit to produce hydrogen. A phase separator unit that operates by cavitation of the geothermal fluids removes gases from the source fluid. A pollution prevention trap may be used to remove solids and other unneeded constituents of the geothermal fluids to be stored or processed in a solution mining unit for reuse or sale. Spent geothermal and working fluids may be processed and injected into the geothermal strata to aid in maintaining its temperature or in solution mining of elements in the lithosphere.
    Type: Application
    Filed: December 12, 2008
    Publication date: February 25, 2010
    Inventors: Edward B. Hinders, Patrick J. Kelly
  • Publication number: 20100025232
    Abstract: Exemplary embodiments include an apparatus, and method associated therewith, for recovering the compression energy stored in hydrogen gas and oxygen gas generated by the electrolysis of water in a high-pressure water electrolyzer. The restored compression energy may be recovered and converted to a useable form to provide power to the high-pressure water electrolyzer, or alternatively to provide usable power to a coupled system that uses high-pressure hydrogen gas or oxygen gas such as a fuel cell for an electric vehicle, or both for use in providing power to the electrolyzer and to the fuel cell electric vehicle.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Nelson A. Kelly, Thomas L. Gibson, David B. Ouwerkerk
  • Patent number: 7632404
    Abstract: Ion transport apparatus (e.g. an electrolytic eluent generator or a suppressor for ion chromatography) in which ions in a first chamber are transported to a liquid in second chamber through a wall comprising an ion exchange bead sealed in a bead seat. The wall is capable of transport ions but of substantially blocking bulk liquid flow.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 15, 2009
    Assignees: Dionex Corporation, Board of Regents, The Univesity of Texas System
    Inventors: Purnendu K. Dasgupta, Bingcheng Yang, Kannan Srinivasan, Masaki Takeuchi
  • Publication number: 20090297633
    Abstract: The oxalic acid aqueous solution filled in an electrolytic tank is electrolyzed with an electrolyzer to produce carbonic acid gas, while ultrasonic wave from an ultrasonic generator is applied to the produced carbonic acid gas bubbles, to form micro bubbles, which is dissolved in said oxalic acid aqueous solution, so as to easily produce carbonic acid gas solution with micro carbonic acid gas bubbles dissolved at a low cost; said carbonic acid gas solution can substitute carbonated spring.
    Type: Application
    Filed: June 8, 2006
    Publication date: December 3, 2009
    Applicant: OMSI CO., LTD.
    Inventors: Yoh Sano, Masahiko Asano, Hitoshi Yagi
  • Patent number: 7625469
    Abstract: A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: December 1, 2009
    Assignee: Sandia Corporation
    Inventors: William G. Yelton, Michael P. Siegal
  • Patent number: 7608538
    Abstract: The present invention is related to a method for forming vertical conductive structures by electroplating. Specifically, a template structure is first formed, which includes a substrate, a discrete metal contact pad located on the substrate surface, an inter-level dielectric (ILD) layer over both the discrete metal contact pad and the substrate, and a metal via structure extending through the ILD layer onto the discrete metal contact pad. Next, a vertical via is formed in the template structure, which extends through the ILD layer onto the discrete metal contact pad. A vertical conductive structure is then formed in the vertical via by electroplating, which is conducted by applying an electroplating current to the discrete metal contact pad through the metal via structure. Preferably, the template structure comprises multiple discrete metal contact pads, multiple metal via structures, and multiple vertical vias for formation of multiple vertical conductive structures.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Qiang Huang, John P. Hummel, Lubomyr T. Romankiw, Mary B. Rothwell
  • Patent number: 7588720
    Abstract: The present invention provides a method and apparatus for sterilizing articles using an ozone-containing gas, where condensation of water from the sterilization atmosphere during the sterilization process is substantially prevented. The inventive sterilization method includes providing a sterilization chamber and placing an article into the sterilization chamber. The sterilization chamber is sealed prior to equalizing the temperature of the article and the atmosphere in the sterilization chamber. A vacuum is applied to achieve a preselected vacuum pressure in the sterilization chamber. Once the vacuum pressure is set, water vapour is supplied to the sterilization chamber. Ozone-containing gas is then supplied to the sterilization chamber and the sterilization chamber remains sealed for a preselected treatment period, where the sterilization chamber remains sealed throughout the whole process. Finally, vacuum in the sterilization chamber is released.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 15, 2009
    Assignee: TSO3, Inc.
    Inventors: Richard Turcot, Simon Robitaille, Sylvie Dufresne
  • Publication number: 20090211899
    Abstract: This technology is a workshop which is diffusing the carbon dioxide gas (CO2) contained in exhaust gas in the air, It invents for the purpose of sanctifying microbes, such as sanctification of the emission gas (especially CO2 gas) of all industries, such as a diesel engine vehicle, a large-sized generating station (thermal power), a large-sized vessel, and an airplane, and also a toxic substance of atmospheric. Of course, the unit which this laboratory invented carrying out a disassembly and a separation for the molecule of nanometer unit of measures, such as gas of carbon dioxide gas (CO2) and a microbe, contained in exhaust gas, and reducing discharge of carbon dioxide gas (CO2) annihilates the disease germ of atmospheric. Carbon dioxide gas (CO2) of atmospheric is decreased by invention of this unit, and the global warming by greenhouse effect is solved.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 27, 2009
    Inventor: Yoshio Niioka
  • Publication number: 20090200171
    Abstract: An electrochemical sensing and data analysis system (and apparatus and methods) adapted for control of electroplating of various metal(s) on a wafer or other suitable substrate. Components of the system utilize multi-variate analysis (MVA) and galvanostatic, potentiodynamic or other electrical measurements (or combinations thereof) to predict, adjust or control plating parameters, e.g., to achieve improved yield of plated substrates with acceptable levels of defects (or lack thereof).
    Type: Application
    Filed: June 18, 2007
    Publication date: August 13, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jianwen Han, Monica K. Hilgarth, Mackenzie King, Steven M. Lurcott
  • Publication number: 20090178918
    Abstract: A method for configuring a solar hydrogen generation system and the system optimization are disclosed. The system utilizes photovoltaic modules and an electrolyte solution to efficiently split water into hydrogen and oxygen. The efficiency of solar powered electrolysis of water is optimized by matching the most efficient voltage generated by photovoltaic cells to the most efficient input voltage required by the electrolysis cell(s). Optimizing PV-electrolysis systems makes solar powered hydrogen generation cheaper and more practical for use as an environmentally clean alternative fuel.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 16, 2009
    Applicant: General Motors Corporation
    Inventors: Thomas L. Gibson, Nelson A. Kelly
  • Patent number: 7560010
    Abstract: A diaphragm electrolytic cell is composed of two or more overlaid modules; at least the upper modules having U-shaped anodes with diaphragm-coated cathodes housed within, allowing for a reduced electrode pitch.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: July 14, 2009
    Assignee: De Nora Elettrodi S.p.A.
    Inventor: Giovanni Meneghini
  • Patent number: 7544277
    Abstract: Sensors for the electro-chemical analysis of samples and methods for the manufacturing of sensors allow for more efficient manufacture and use of electro-chemical sensors. Flexible sheets, such as polycarbonate sheets, are used to easily manufacture sensor components, with sensor chemistry being applied to the sensor components at manufacture. Sensors may be manufactured with modular components, enabling easy production-line manufacture and construction of electro-chemical sensors with significant cost savings and increased efficiency over existing sensor styles and sensor manufacturing techniques.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: June 9, 2009
    Assignee: Bayer Healthcare, LLC
    Inventor: Frank W. Wogoman
  • Patent number: 7544283
    Abstract: A system for removing a thin metal film is disclosed. The system comprises an inclined metal plate electrode for guiding a downward electrolyte flow, an auxiliary electrode placed on either the upstream or downstream side of the metal plate electrode such that a part of the auxiliary electrode is immersed into the electrolyte, and a power supply for applying a DC voltage to the both electrodes. The system is used to remove a metal thin film on the surface of an insulator by making the electrolyte flowing down the metal plate electrode strike against the metal thin film while the DC voltage is applied to the metal plate electrode and auxiliary electrode.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: June 9, 2009
    Assignee: Hitachi Zosen Corporation
    Inventors: Hiroyuki Daiku, Hidehiko Maehata, Masanori Tsukahara, Shogo Hamada, Tetsuya Inoue, Hiroshi Hamasaki
  • Publication number: 20090120797
    Abstract: An improved process for treating an electrically conductive surface of a workpiece by cleaning or coating the surface is provided, comprising the steps of deploying the electrically conducting surface of the workpiece to form a cathode in an electrolytic cell; establishing a DC voltage between the cathode and an anode; forming a working gap between the anode and the cathode, and establishing a seal around the working gap to form a sealed treatment zone; delivering into the working gap an electrically conductive medium selected from the group consisting of: (A) an aqueous electrolyte from which a foam is created; (B) a foam; and a mixture of components (A) and (B), so that electrically conductive medium consisting of a foam comprising a gas/vapor phase and a liquid phase fills the working gap, wherein said electrically conductive medium enters the electrolytic cell through tubes having discharge ends oriented at approximately ten degrees from parallel to the workpiece, and wherein turbulence is created within
    Type: Application
    Filed: November 2, 2005
    Publication date: May 14, 2009
    Applicant: CAP TECHNOLOGIES, LLC
    Inventor: Edward O. Daigle
  • Publication number: 20090104098
    Abstract: The invention provides methods and apparatuses for removing carbon dioxide from a gas stream. In particular, the invention provides methods and apparatuses for absorbing carbon dioxide from a coal-fired boiler flue gas stream using an absorbing solution and for regeneration of an alkaline component used in the absorbing solution. In one embodiment, the invention provides a method for removing carbon dioxide from a gas stream by contacting a gas stream containing carbon dioxide with an alkaline liquid stream; absorbing at least a portion of the carbon dioxide into the alkaline liquid stream to produce absorbed carbon dioxide; and catalyzing a reaction of the: absorbed carbon dioxide to a form of carbonate.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Inventor: Uday Singh
  • Publication number: 20090092469
    Abstract: To provide a substrate processing unit, a substrate transfer method, a substrate cleansing process unit, and a substrate plating apparatus that make it possible for a substrate carry-in mechanism such as a robot arm to quickly release hold on the substrate after carrying in the substrate so as to shorten the time for holding the substrate and improve throughput. The substrate processing unit 10 includes a substrate holding mechanism 10 for holding the substrate 11 in a specified holding position, and a processing mechanism 32 for applying a specified process to the substrate held with the substrate holding mechanism in which a substrate guide mechanism 20 is provided with a guide pin 15 for guiding the substrate to vicinity of a holding position.
    Type: Application
    Filed: August 25, 2006
    Publication date: April 9, 2009
    Applicant: EBARA CORPORATION
    Inventors: Masahiko Sekimoto, Toshio Yokoyama, Teruyuki Watanabe, Kenichi Suzuki, Kenichi Kobayashi, Ryo Kato
  • Publication number: 20090050486
    Abstract: An apparatus for plating a magnetic film on a substrate includes: a track including a plurality of stopping points along the track; a permanent magnet placed on the track such that the permanent magnet can be moved along the track towards and away from the stopping points; at least one plating tank positioned on the stopping point; and a removable high permeability iron flux concentrator inserted into gaps between the substrate and inside walls of the plating tank, substantially surrounding the substrate and extending around and under the substrate.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Applicant: International Business Machines Corporation
    Inventors: Matteo Flotta, Lubomyr Taras Romankiw, Xiaoyan Shao, Steven Erik Steen, Bucknell Chapman Webb
  • Publication number: 20090032404
    Abstract: An apparatus that performs an electrolytic plating on a plating surface of a belt substrate is provided. The apparatus includes a plating tank, a conveyor device configured to carry a belt substrate through an interior of the plating tank, an immersed cathode power-supply section provided within the interior of the plating tank, an auxiliary cathode power-supply section provided within the interior of the plating tank, and short-circuit wiring configured to short-circuit the immersed cathode power-supply section to the auxiliary cathode power-supply section. A plating method for performing electrolytic plating on a plating surface of a belt substrate is provided.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 5, 2009
    Applicant: IBIDEN CO., LTD.
    Inventors: Yasuaki Tachi, Shigeki Sawa, Toshiyuki Kasuga
  • Patent number: 7485160
    Abstract: A hydrogen generation apparatus is constituted of a treated-substance container, which has a hydrogen discharge port for activating a treated substance; and at least one plate-form activation structural body, which is provided within the treated-substance container vertically thereto. The plate-form activation structural body is a structural body that arranges particles composed of any of a single constituent element, which is selected from a group comprising silicon, titanium, nickel, and samarium, and fluorocarbon at positions that amplify unique wave energy in each the element and the fluorocarbon, and which structural body has an energy concentration field between the particles within the treated-substance container, wherein gases containing hydrogen are generated by any of the treated substance within the treated-substance container staying in and passing through the energy concentration field. The hydrogen generation apparatus can generate hydrogen with less energy and achieve space saving.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: February 3, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Masayoshi Kitada
  • Publication number: 20090020434
    Abstract: A substrate processing method makes it possible to fill interconnect recesses, such as trenches, with a defect-free interconnect material by carrying out electroplating directly on a surface of a ruthenium film as a barrier layer. The substrate processing method comprises: providing a substrate having interconnect recesses formed in a substrate surface and having a ruthenium film formed in the entire substrate surface including interior surfaces of the interconnect recesses; keeping the substrate surface in contact with a plating solution for a predetermined time to adsorb an additive in the plating solution onto the ruthenium film, and then carrying out electroplating to form a conductive film on a surface of the ruthenium film.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 22, 2009
    Inventors: Akira Susaki, Tsutomu Nakada, Satoru Yamamoto, Keiichi Kurashina, Hiroyuki Kanda
  • Publication number: 20080296150
    Abstract: A device and a method for metallic electrolytic coating of an object of electrically conductive material, wherein the object has at least two surface portions that are desired to be coated with layers of different thicknesses. The device includes an anode. The device is designed to receive the object in such a way that the object constitutes a cathode and that, upon receipt of the object, a space is formed for receiving a liquid-absorbing material and an electrolyte for coating the object. The body of the anode includes at least two surface portions) that have different electrical conductivity and that are arranged opposite to the surface portions of the received object.
    Type: Application
    Filed: December 19, 2006
    Publication date: December 4, 2008
    Applicant: ABB Technology Ltd.
    Inventor: Jan Haglund
  • Patent number: 7448121
    Abstract: A metal hand tool is fabricated by a method to manufacture the metal hand tool, and the metal hand tool has a body with an outer surface and a preparing region, a printing layer with a mark and an electroplate layer. The method has a forming step, a printing step and an electroplating step. In the preparing step, the body is made of metal. In the printing step, the printing layer is printed on the preparing region in the outer surface of the body and the mark is enchased on the printing layer with an external surface. In the electroplating step, the electroplate layer is electroplated on the external surface of the mark and the outer surface of the body except the preparing region with the printing layer to complete the metal hand tool.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: November 11, 2008
    Assignee: Jin Xiang Kai Industry Co., Ltd.
    Inventor: Chiu-Yuea Hung
  • Publication number: 20080274039
    Abstract: A first aspect of the present invention is a self-contained electrolysis process. The process includes utilizing a cryogenic cogeneration process to extract a liquid from an atmospheric medium, passing a current through the liquid, and separating at least one chemical element from the liquid. A second aspect of the present invention is a self-contained electrolysis apparatus. The apparatus includes cryogenic cogeneration means for extracting a liquid from an atmospheric medium, electrical means for passing a current through the liquid and separating means for separating at least one chemical compound from the liquid. A third aspect of the present invention is a method and system of removing at least one element from a chemical compound. The method and system include utilizing a cryogenic cogeneration process to remove the at least one element from the chemical compound.
    Type: Application
    Filed: February 27, 2008
    Publication date: November 6, 2008
    Inventor: Mark Alen Shirk
  • Patent number: 7445941
    Abstract: The assay devices, assay systems and device components of this invention comprise at least two opposing surfaces disposed a capillary distance apart, at least one of which is capable of immobilizing at least one target ligand or a conjugate in an amount related to the presence or amount of target ligand in the sample from a fluid sample in a zone for controlled fluid movement to, through or away the zone. The inventive device components may be incorporated into conventional assay devices with membranes or may be used in the inventive membrane-less devices herein described and claimed. These components include flow control elements, measurement elements, time gates, elements for the elimination of pipetting steps, and generally, elements for the controlled flow, timing, delivery, incubation, separation, washing and other steps of the assay process.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 4, 2008
    Assignee: Biosite Incorporated
    Inventor: Kenneth F. Buechler
  • Publication number: 20080257717
    Abstract: The invention relates to a method for treating surfaces of hollow parts, this method being a conversion treatment such as an anodizing, and to a method according to which the hollow pieces are completely immersed inside at least one treatment tank containing a liquid, characterized in that each hollow piece is immersed while making it execute at least one rotational movement so that air bubbles likely to be created inside the tank are removed from the inner wall of the hollow part.
    Type: Application
    Filed: January 26, 2006
    Publication date: October 23, 2008
    Inventor: Frederic Vacheron
  • Publication number: 20080237066
    Abstract: An electrolytic processing unit device includes an electrolytic processor for performing electrolytic processing on a wafer, a washer for washing the processed wafer, and a drier for drying the wafer. The electrolytic processor, the washer, and the drier are placed in one processing chamber to form one module. In this manner, the electrolytic processing procedure, the washing procedure, and the drying procedure for wafers can be continuously carried out in one place.
    Type: Application
    Filed: December 21, 2007
    Publication date: October 2, 2008
    Inventors: Takashi FUJITA, Kyouji WATANABE
  • Publication number: 20080230376
    Abstract: A desalination plant, includes a sea water intake, a desalination unit having a reverse osmosis or a thermal desalination unit, a fresh water outlet and a brine outlet. The plant also includes a salinity gradient power unit having a brine inlet, a seawater inlet and a mixed water outlet. The brine outlet is connected to the brine inlet and the salinity gradient power unit is arranged to generate an electrical current. A solar power heater is between the brine outlet and the brine inlet. A method for reducing the power consumption of a desalination plant providing fresh water and brine from sea water, includes a first step of providing a salinity gradient power unit, a next step of feeding the salinity gradient power unit with brine from the desalination plant as high salinity feed and sea water as low salinity feed.
    Type: Application
    Filed: July 19, 2006
    Publication date: September 25, 2008
    Applicant: Vlaamse Instelling Voor Technologisch Onderzoek (VITO)
    Inventor: Etienne Brauns
  • Patent number: 7427337
    Abstract: An apparatus for electropolishing a conductive layer on a wafer using a solution is disclosed. The apparatus comprises an electrode assembly immersed in the solution configured proximate to the conductive layer having a longitudinal dimension extending to at least a periphery of the wafer, the electrode assembly including an elongated contact electrode configured to receive a potential difference, an isolator adjacent the elongated contact electrode, and an elongated process electrode adjacent the isolator configured to receive the potential difference, a voltage supply is configured to supply the potential difference between the contact electrode and the process electrode to electropolish the conductive layer on the wafer.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: September 23, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Jalal Ashjaee, Boris Govzman, Homayoun Talieh, Bernard M. Frey
  • Publication number: 20080213995
    Abstract: In one embodiment, the present invention includes a method for forming a dielectric layer on a semiconductor wafer and patterning at least one opening in the dielectric layer, depositing a barrier layer over the dielectric layer, depositing a conductive layer over the barrier layer, and electropolishing the conductive layer while ultrasonically agitating the semiconductor wafer until a predetermined amount of the conductive layer remains over the barrier layer. Other embodiments are described and claimed.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Inventors: Tatyana N. Andryushchenko, Radek P. Chalupa, Anne E. Miller, Lei Jiang
  • Publication number: 20080197215
    Abstract: The invention relates to a tool for the electrochemical machining of a fuel injection device, the tool comprising an electrode holder and an electrode element which forms a cathode during the machining operation in order to be able to electrochemically remove material from the fuel injection device in a machining region. The electrode element is arranged in such a way that it can be displaced in relation to the electrode holder.
    Type: Application
    Filed: May 8, 2006
    Publication date: August 21, 2008
    Inventors: Christian Ziegler, Steffen Beetz, Rudolf Scherer, Stefan Moser
  • Publication number: 20080179180
    Abstract: Apparatus and methods for electrochemically processing microfeature wafers. The apparatus can have a vessel including a processing zone in which a microfeature wafer is positioned for electrochemical processing. The apparatus further includes at least one counter electrode in the vessel that can operate as an anode or a cathode depending upon the particular plating or electropolishing application. The apparatus further includes a supplementary electrode and a supplementary virtual electrode. The supplementary electrode is configured to operate independently from the counter electrode in the vessel, and it can be a thief electrode and/or a de-plating electrode depending upon the type of process. The supplementary electrode can further be used as another counter electrode during a portion of a plating cycle or polishing cycle.
    Type: Application
    Filed: January 29, 2007
    Publication date: July 31, 2008
    Inventors: Paul R. McHugh, Gregory J. Wilson, Daniel J. Woodruff
  • Patent number: 7396430
    Abstract: A proximity head and associated method of use is provided for performing confined area planarization of a semiconductor wafer. The proximity head includes a chamber defined to maintain an electrolyte solution. A cathode is disposed within the chamber in exposure to the electrolyte solution. A cation exchange membrane is disposed over a lower opening of the chamber. A top surface of the cation exchange membrane is in direct exposure to the electrolyte solution to be maintained within the chamber. A fluid supply channel is defined to expel fluid at a location adjacent to a lower surface of the cation exchange membrane. A vacuum channel is defined to provide suction at a location adjacent to the lower surface of the cation exchange membrane, such that the fluid to be expelled from the fluid supply channel is made to flow over the lower surface of the cation exchange membrane.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: July 8, 2008
    Assignee: Lam Research Corporation
    Inventors: John M. Boyd, Fritz C. Redeker, Yezdi Dordi, Michael Ravkin, John de Larios
  • Publication number: 20080110744
    Abstract: A method and device for the preparation of a gas or mixture of gases containing molecular fluorine from a gas or mixture of gases derived from fluorine, wherein the fluorinated gas or mixture of gases, particularly nitrogen trifluoride NF2, is decomposed by cracking in a plasma of molecules of fluorinated gases in order to produce a mixture of atomic fluorine and other species resulting form said cracking, whereupon said mixture is subsequently cooled in a rapid manner (24), if necessary at a temperature of less than 500° C., in order to result in the formation of molecular fluorine of rat least 50% atomic fluorine thus formed and to minimize the recombination of fluorine atoms with other products arising from said cracking and to reform a fluorinated gas or mixture of gases, wherein the gaseous mixture containing F2 is recovered.
    Type: Application
    Filed: June 26, 2005
    Publication date: May 15, 2008
    Inventors: Jean-Marc Girard, Herve E. Dulphy, Jean-Christophe Rostaing, Pascal Moine
  • Patent number: 7344626
    Abstract: Detection of abnormal signal traces in electrochemical measurements generated using an electrochemical test strip to which a potential is applied allows for an indication of an erroneous analyte determination. The current trace has an expected shape in which a peak current is observed a time tpeak after which there is a decrease in current. To detect abnormal signal traces, the time tpeak is determined experimentally and compared with an expected value, t?peak, and if the difference between the two values to over a predetermined threshold, an error message is provided to the user instead of a test result. The value of t?peak is determined as a function of a mobility term that is determined during a potentiometry phase following the amperometric measurements.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: March 18, 2008
    Assignee: Agamatrix, Inc.
    Inventors: Ian Harding, Richard Williams
  • Patent number: 7338808
    Abstract: Provided is a method for determining a zeta potential generated between a solid wall and a solution. The method includes (a) injecting an electrolyte solution into a first inlet of a T channel, which is provided with first and second inlet electrodes and a grounded outlet electrode, and a mixed solution of the electrolyte solution and a fluorescent dye into a second channel of the T channel and maintaining a steady-state of the two solutions; (b) applying a direct current electric field from the first and second electrodes to the outlet electrode to form an interface between the electrolyte solution and the mixed solution; (c) applying an alternating current electric field from one of the two inlet electrodes to the outlet electrode to oscillate the interface; and (d) measuring an amplitude of oscillation of the interface and determining the zeta potential from the standard relationship between the zeta potential and the amplitude.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: March 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-kyoung Cho, Sang-min Shin, In-seok Kang, Geun-bae Lim
  • Publication number: 20080029402
    Abstract: An electrochemical processing apparatus is provided, in which a substrate and an anode placed in a chamber are partitioned into a cathode region including the substrate and an anode region including the anode by placing a multi-layered structure of a filtration film and a cation exchange film so that the filtration film is positioned on the substrate side. A plating solution containing additives is introduced into the cathode region, whereby a substrate is plated.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 7, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Tetsuya Kurokawa, Koji Arita, Kaori Noda
  • Patent number: 7312087
    Abstract: The invention is directed to devices and methods that allow for simultaneous multiple biochip analysis. The method of analyzing the plurality of biochips includes inserting a first biochp into a first station of an analysis device, inserting a second biochip into a second station of the analysis device, wherein each of the first and second biochips include a substrate, the substrates including an array of detection electrodes, each electrode including a different capture binding ligand, a different target analyte, and a label, and a plurality of electrical contracts, detecting current as an indication of the presence of the labels on the first biochip, and detecting current as an indication of the presence of the labels on the first second biochip. The devices and method may be used with multiple cartridges comprising biochips comprising arrays, such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: December 25, 2007
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Hau H. Duong, Gary Blackburn, Jon F. Kayyem, Stephen D. O'Connor, Gary T. Olsen, Robert Pietri, Robert H. Terbrueggen
  • Patent number: 7309406
    Abstract: The present invention provides a method and apparatus that plates/deposits a conductive material on a semiconductor substrate and then polishes the same substrate. This is achieved by providing multiple chambers in a single apparatus, where one chamber can be used for plating/depositing the conductive material and another chamber can be used for polishing the semiconductor substrate. The plating/depositing process can be performed using brush plating or electro chemical mechanical deposition and the polishing process can be performed using electropolishing or chemical mechanical polishing. The present invention further provides a method and apparatus for intermittently applying the conductive material to the semiconductor substrate and also intermittently polishing the substrate when such conductive material is not being applied to the substrate.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: December 18, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Emeka Uzoh
  • Patent number: 7225084
    Abstract: A measuring device for process technology, useful in measuring- and/or cleaning- and/or calibration-installations in the field of process automation for measuring pH-values and/or redox potentials and/or other process parameters, and an operating method therefor. The measuring device includes at least one central unit having at least one central computer, wherein, in the central computer a management system is provided for the dynamic management of input components (I) and/or output components (O) and/or functional components (F) and/or service components (D) and/or management components (V) and/or interface components (IX) and/or other system components.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 29, 2007
    Assignee: Endress + Hauser Conducta GmbH + Co. KG
    Inventors: Michael Gunzert, Detlev Wittmer
  • Patent number: 7198754
    Abstract: A biological material detection apparatus which detects a charged biological material such as a gene or protein contained in a sample liquid is disclosed. A biological material detection element includes a substrate, at least one first electrode formed on the substrate, and a plurality of second electrodes which are arrayed at predetermined intervals around the first electrode on the substrate along the circumferential direction and to which ligands that react with predetermined biological materials are respectively immobilized. A sample liquid is introduced toward the first electrode on the substrate. The introduced sample liquid is moved radially toward the second electrodes by electrical control.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: April 3, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiro Kasahara, Yoshio Ishimori
  • Patent number: 7172734
    Abstract: A sanitizing device comprising: a sanitizing component for sanitizing a surface, liquid, gas, and/or associated surrounding environment, wherein the sanitizing component includes an electrochemical, chemical, and/or corona cell; and a housing for retaining the sanitizing component. A particulate filtering component capable of substantially trapping particulates thereon and fragrance emitting means are also provided.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 6, 2007
    Inventor: Ashok V. Joshi
  • Patent number: 7135331
    Abstract: Provided is an apparatus for detecting biopolymers (DNA) capable of total analysis including non-reacted samples without complicated operations such as washing. A DNA probe is fixed to one of electrodes and direct current voltage is placed between the electrodes, so that it becomes possible to separate complementary strand sample DNA and non-complementary strand sample DNA. By analyzing from a ratio in the whole reaction system, it is possible to obtain clearer results. Further, by using electrophoresis by gel together, it is possible to separate reacted samples and non-reacted samples to perform measurements therefor in the same reaction field.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: November 14, 2006
    Assignee: Hitachi Software Engineering Co., Ltd.
    Inventors: Keiichi Sato, Mitsuhiro Tachibana, Toshiki Morita, Motonao Nakao
  • Patent number: 7128872
    Abstract: The sterilization method disclosed includes the steps of providing a sterilization chamber; placing the article into the sterilization chamber; equalizing the temperature of the article and the sterilization atmosphere; sealing the sterilization chamber; applying a vacuum of a preselected vacuum pressure to the sterilization chamber; supplying water vapour to the sterilization chamber under vacuum; supplying ozone-containing gas to the sterilization chamber; maintaining the sterilization chamber sealed for a preselected treatment period; and releasing the vacuum in the sterilization chamber; whereby a vacuum pressure is used which lowers the boiling temperature of water in the sterilization chamber below the temperature in the sterilization chamber. One or more ventilating cycles can be added to the preferred method for removing the remaining ozone and humidity from the sterilization chamber.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: October 31, 2006
    Assignee: TSO3 Inc.
    Inventors: Simon Robitaille, Mario Simard, Stephane Fournier, Sylvie Dufresue, Richard Turcot