Formation Of Electrically Isolated Lateral Semiconductive Structure Patents (Class 438/400)
  • Patent number: 9029954
    Abstract: A semiconductor device according to the present invention has an n-type MIS transistor. The n-type MIS transistor has a first active region surrounded by a device isolation region in a semiconductor substrate, a first gate insulating film having a first high-dielectric-constant insulating film containing a first metal for adjustment, and a first electrode formed on the first gate insulating film. A protrusion amount of one end of the first high-dielectric-constant insulating film on the first device isolation part is smaller than a protrusion amount of an end of the first gate electrode above the first device isolation part.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: May 12, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Tomohiro Fujita
  • Publication number: 20150123138
    Abstract: An electronic device includes a III-V substrate having a hexagonal crystal structure and a normal to a growth surface characterized by a misorientation from the <0001> direction of between 0.15° and 0.65°. The electronic device also includes a first epitaxial layer coupled to the III-V substrate and a second epitaxial layer coupled to the first epitaxial layer. The electronic device further includes a first contact in electrical contact with the substrate and a second contact in electrical contact with the second epitaxial layer.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: AVOGY, INC.
    Inventors: Isik C. Kizilyalli, David P. Bour, Thomas R. Prunty, Gangfeng Ye
  • Patent number: 9023712
    Abstract: By forming a trench isolation structure after providing a high-k dielectric layer stack, direct contact of oxygen-containing insulating material of a top surface of the trench isolation structure with the high-k dielectric material in shared polylines may be avoided. This technique is self-aligned, thereby enabling further device scaling without requiring very tight lithography tolerances. After forming the trench isolation structure, the desired electrical connection across the trench isolation structure may be re-established by providing a further conductive material.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: May 5, 2015
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy Wei, Roman Boschke, Markus Forsberg
  • Patent number: 9023704
    Abstract: A method for fabricating a semiconductor device includes forming a pre-isolation layer covering a fin formed on a substrate, the pre-isolation layer including a lower pre-isolation layer making contact with the fin and an upper pre-isolation layer not making contact with the fin, removing a portion of the upper pre-isolation layer by performing a first polishing process, and planarizing the pre-isolation layer such that an upper surface of the fin and an upper surface of the pre-isolation layer are coplanar by performing a second polishing process for removing the remaining portion of the upper pre-isolation layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Il-Young Yoon, Chang-Sun Hwang, Bo-Kyeong Kang, Jae-Seok Kim, Ho-Young Kim, Bo-Un Yoon
  • Patent number: 9023713
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing an ultrathin body (UTB) fully depleted silicon-on-insulator (FDSOI) substrate. A PFET temporary gate structure and an NFET temporary gate structure are formed on the substrate. The method implants ions to form lightly doped active areas around the gate structures. A diffusionless annealing process is performed on the active areas. Further, a compressive strain region is formed around the PFET gate structure and a tensile strain region is formed around the NFET gate structure.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: May 5, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Ralf Illgen, Stefan Flachowsky
  • Patent number: 9018046
    Abstract: An area efficient distributed device for integrated voltage regulators comprising at least one filler cell coupled between a pair of PADS on I/O rail of a chip and at least one additional filler cell having small size portion of said device is coupled to said I/O rails for distributing portions of said device on the periphery of said chip. The device is coupled as small size portion on the lower portion of said second filler cell for distributing said device on the periphery of said chip and providing maximal area utilization.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 28, 2015
    Assignees: STMicroelectronics International N.V., STMicroelectronics S.r.l.
    Inventors: Joshipura Jwalant, Nitin Bansal, Amit Katyal, Massimiliano Picca
  • Patent number: 9012300
    Abstract: A manufacturing method for a shallow trench isolation. First, a substrate is provided, a hard mask layer and a patterned photoresist layer are sequentially formed on the substrate, at least one trench is then formed in the substrate through an etching process, the hard mask layer is removed. Afterwards, a filler is formed at least in the trench and a planarization process is then performed on the filler. Since the planarization process is performed only on the filler, so the dishing phenomenon can effectively be avoided.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: April 21, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Wu-Sian Sie, Chun-Wei Hsu, Chia-Lung Chang, Chih-Hsun Lin, Chang-Hung Kung, Yu-Ting Li, Wei-Che Tsao, Yen-Ming Chen, Chun-Hsiung Wang, Chia-Lin Hsu
  • Publication number: 20150104922
    Abstract: An integrated device includes at least one heat generating component which generates heat when operated, at least one temperature-sensitive component, and one or more hollow insulation regions arranged between the at least one heat generating component and the at least one temperature-sensitive component. The hollow insulation region may be provided as a vacuum gap.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 16, 2015
    Inventors: Thomas Brunschwiler, Jens Hofrichter
  • Publication number: 20150102454
    Abstract: A semiconductor substrate may be formed by providing an providing a semiconductor-on-insulator (SOI) substrate including a base semiconductor layer, a buried insulator layer above the base semiconductor layer, and a SOI layer comprising a first semiconductor material above the buried insulator layer; forming an isolation region in the SOI layer isolating a first portion of the SOI layer from a second portion of the SOI layer; removing the second portion of the SOI layer to expose a portion of the buried insulator layer; forming a hole in the exposed portion of the buried insulator layer to expose a portion of the base semiconductor layer; and forming a semiconductor layer made of a second semiconductor material on the exposed portion of the base semiconductor layer, so that the replacement semiconductor layer covers the exposed region of the buried insulator layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek, Dominic J. Schepis
  • Publication number: 20150099342
    Abstract: Forming a shallow trench isolation (STI) structure filled with a flowable dielectric layer involves performing an implant to generate passages in the upper portion of the flowable dielectric layer. The passages enable oxygen source in a thermal anneal to reach the flowable dielectric layer near the bottom of the STI structure during the thermal anneal to convert a SIONH network of the reflowable dielectric layer to a network of SiOH and SiO. The passages also help to provide escape paths for by-products produced during another thermal anneal to convert the network of SiOH and SiO to SiO2.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sen-Hong Syue, Ziwei Fang
  • Patent number: 9000518
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first vertical drift region of semiconductor material, a second vertical drift region of semiconductor material, and a buried lateral drift region of semiconductor material that abuts the vertical drift regions. In one or more embodiments, the vertical drift regions and buried lateral drift region have the same conductivity type, wherein a body region of the opposite conductivity type overlies the buried lateral drift region between the vertical drift regions.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: April 7, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Xin Lin, Jiang-Kai Zuo
  • Patent number: 8994117
    Abstract: A semiconductor chip having a P? substrate and an N+ epitaxial layer grown on the P? substrate is shown. A P? circuit layer is grown on top of the N+ epitaxial layer. A first moat having an electrically quiet ground connected to a first N+ epitaxial region is created by isolating the first N+ epitaxial region with a first deep trench. The first moat is surrounded, except for a DC path, by a second moat with a second N+ epitaxial region, created by isolating the second N+ epitaxial region with a second deep trench. The second moat may be arranged as a rectangular spiral around the first moat.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Joel T. Ficke, David M. Friend, James D. Strom, Erik S. Unterborn
  • Patent number: 8987111
    Abstract: According to a method of fabricating a semiconductor device, a first mask pattern is used to etch first device isolation layers and active lines or form grooves, in which word lines will be provided. Thereafter, the active lines are etched in a self-alignment manner by using the first mask pattern as an etch mask. As a result, it is possible to suppress mask misalignment from occurring.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jay-Bok Choi, Jiyoung Kim, Hyun-Woo Chung, Sungkwan Choi, Yoosang Hwang
  • Patent number: 8987100
    Abstract: Provided are methods of forming field effect transistors. The method includes preparing a substrate with a first region and a second region, forming fin portions on the first and second regions, each of the fin portions protruding from the substrate and having a first width, forming a first mask pattern to expose the fin portions on the first region and cover the fin portions on the second region, and changing widths of the fin portions provided on the first region.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Woo Oh, Shincheol Min, Jongwook Lee, Choongho Lee
  • Patent number: 8987093
    Abstract: Method of forming multi-gate finFETs with epitaxially-grown merged source/drains. Embodiments of the invention may include forming a plurality of semiconductor fins joined by a plurality of inter-fin semiconductor regions, depositing a sacrificial gate over a center portion of each of the plurality of fins, forming a first merge layer over a first end of each of the plurality of fins to form a first merged fin region, forming a second merge layer over the second end of each of the plurality of fins to form a second merged fin region, etching a portion of the first merged fin region to form a first source/drain base region, etching a portion of the second merged fin region to form a second source/drain base region, forming a first source/drain region on the first source/drain base region, and forming a second source/drain region on the second source/drain base region.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Eric C. Harley, Judson Robert Holt, Alexander Reznicek, Thomas N. Adam
  • Publication number: 20150069568
    Abstract: According to one embodiment, a semiconductor memory device includes a semiconductor substrate and a memory array. The semiconductor substrate has a first face. The memory array region is provided on the first face and includes a plurality of semiconductor pillars. The semiconductor pillars extend in a first direction perpendicular to the first face. Each of the semiconductor pillars includes a plurality of memory cells connected in series. Each of the semiconductor pillars is disposed at the nodes of a honeycomb shape when viewed in the first direction. When the semiconductor pillars are projected onto a first plane along the first and second directions perpendicular to the first direction, a component in the second direction of an interval between the semiconductor pillars has first and second intervals repeated alternately. The second interval is an integer multiple of the first interval greater than or equal to 2.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 12, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Osamu Yamane, Yoshihiro Yanai, Hiromitsu Mashita
  • Patent number: 8975154
    Abstract: A method for producing at least one deep trench isolation in a semiconductor substrate including silicon and having a front side may include forming at least one cavity in the semiconductor substrate from the front side. The method may include conformally depositing dopant atoms on walls of the cavity, and forming, in the vicinity of the walls of the cavity, a silicon region doped with the dopant atoms. The method may further include filling the cavity with a filler material to form the at least one deep trench isolation.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: March 10, 2015
    Assignees: STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Didier Dutartre, Zahra Aitfqirali-Guerry, Yves Campidelli, Denis Pellissier-Tanon
  • Publication number: 20150060959
    Abstract: An embodiment fin field-effect transistor (FinFET) includes an inner fin, and outer fin spaced apart from the inner fin by a shallow trench isolation (STI) region, an isolation fin spaced apart from the outer fin by the STI region, the isolation fin including a body portion, an isolation oxide, and an etch stop layer, the etch stop layer interposed between the body portion and the isolation oxide and between the STI region and the isolation oxide, and a gate formed over the inner fin, the outer fin, and the isolation fin.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Tang Lin, Chih-Yu Hsu, Clement Hsingjen Wann, Chih-Sheng Chang
  • Publication number: 20150054120
    Abstract: A method comprises growing a channel layer over a substrate, wherein the channel layer comprises a first channel region and a second channel region, and wherein the first channel region and the second channel region are separated by a first isolation region, depositing a hard mask layer over the channel layer, patterning the hard mask layer, applying a first delta doping process to the first channel region to form a first delta doping layer over the first channel region, applying a second delta doping process to the second channel region to form a second delta doping layer over the second channel region, wherein the second delta doping layer is of a different doping density from the first delta doping layer and applying a diffusion process to the first delta doping layer and the second delta doping layer.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Krishna Kumar Bhuwalka, Martin Christopher Holland
  • Publication number: 20150054117
    Abstract: Semiconductor devices with guard rings are described. The semiconductor devices may be, e.g., transistors and diodes designed for high-voltage applications. A guard ring is a floating electrode formed of electrically conducting material above a semiconductor material layer. A portion of an insulating layer is between at least a portion of the guard ring and the semiconductor material layer. A guard ring may be located, for example, on a transistor between a gate and a drain electrode. A semiconductor device may have one or more guard rings.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: Umesh Mishra, Srabanti Chowdhury, Yuvaraj Dora
  • Publication number: 20150054039
    Abstract: The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Chao Hsiung Wang, Chi-Wen Liu
  • Publication number: 20150056780
    Abstract: Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
    Type: Application
    Filed: October 3, 2014
    Publication date: February 26, 2015
    Inventors: Rajesh Kelekar, Aaron Francis, Gregory Lim
  • Patent number: 8957496
    Abstract: An electronic apparatus includes a semiconductor substrate, a circuit block disposed in and supported by the semiconductor substrate and comprising an inductor, and a discontinuous noise isolation guard ring surrounding the circuit block. The discontinuous noise isolation guard ring includes a metal ring supported by the semiconductor substrate and a ring-shaped region disposed in the semiconductor substrate, having a dopant concentration level, and electrically coupled to the metal ring, to inhibit noise in the semiconductor substrate from reaching the circuit. The metal ring has a first gap and the ring-shaped region has a second gap.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: February 17, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Qiang Li, Olin L. Hartin, Sateh Jalaleddine, Radu M. Secareanu, Michael J. Zunino
  • Publication number: 20150044810
    Abstract: A die includes a first plurality of edges, and a semiconductor substrate in the die. The semiconductor substrate includes a first portion including a second plurality of edges misaligned with respective ones of the first plurality of edges. The semiconductor substrate further includes a second portion extending from one of the second plurality of edges to one of the first plurality of edges of the die. The second portion includes a first end connected to the one of the second plurality of edges, and a second end having an edge aligned to the one of the first plurality of edges of the die.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: I-I Cheng, Chih-Mu Huang, Pin Chia Su, Chi-Cherng Jeng, Volume Chien, Chih-Kang Chao
  • Publication number: 20150044854
    Abstract: Provided is a method of fabricating a semiconductor device. The method of fabricating a semiconductor device includes preparing a substrate in which a scribe lane region and a chip region are defined, forming a trench in the scribe lane region of the substrate, forming a stopper layer in a part in the trench, and forming an alignment mark material on the stopper layer.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventors: Jeong-Kil LEE, Chan-Ho PARK, Nam-Ki CHO, Won-Sang CHOI
  • Patent number: 8946048
    Abstract: High-density semiconductor memory is provided with enhancements to gate-coupling and electrical isolation between discrete devices in non-volatile memory. The intermediate dielectric between control gates and charge storage regions is varied in the row direction, with different dielectric constants for the varied materials to provide adequate inter-gate coupling while protecting from fringing fields and parasitic capacitances. Electrical isolation is further provided, at least in part, by air gaps that are formed in the column (bit line) direction and/or air gaps that are formed in the row (word line) direction.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 3, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, George Matamis, Henry Chien, James Kai, Yuan Zhang
  • Publication number: 20150021734
    Abstract: A semiconductor device includes a silicon substrate layer with a decoupling region. The decoupling region of the silicon substrate layer comprises an array of lamellas laterally spaced apart from each other by cavities. Each lamella of the array of lamellas comprises at least 20% silicon dioxide.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventor: Thoralf Kautzsch
  • Publication number: 20150021713
    Abstract: Among other things, one or more semiconductor arrangements and techniques for forming such semiconductor arrangements are provided. A semiconductor arrangement comprises a first guard ring surrounding at least a portion of a device, and a first poly layer formed over the first guard ring.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 22, 2015
    Inventors: Sheng-Fang Cheng, Yen-Lin Liu, Chen-Chih Wu, Chien-Yuan Lee
  • Patent number: 8936994
    Abstract: A method of processing substrates in a lithography system unit, the lithography system unit comprising at least two substrate preparation units, a load lock unit comprising at least first and second substrate positions, and a substrate handling robot for transferring substrates between the substrate preparation units and the load lock unit. The method comprises providing a sequence of substrates to be exposed to the robot, including an Nth substrate, an N?1th substrate, and an N+1th substrate; transferring the Nth substrate to a first one of the substrate preparation units; clamping the Nth substrate on a first substrate support structure in the first substrate preparation unit to form a clamped Nth substrate; transferring the clamped Nth substrate from the first substrate preparation unit to an unoccupied one of the first and second positions in the load lock unit; and exposing the clamped Nth substrate in the lithography system unit.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 20, 2015
    Assignee: Mapper Lithography IP B.V.
    Inventors: Vincent Sylvester Kuiper, Erwin Slot, Marcel Nicolaas Jacobus Van Kervinck, Guido De Boer, Hendrik Jan De Jong
  • Patent number: 8936993
    Abstract: A hybrid substrate comprises first and second active areas made from semiconductor materials laterally offset from one another and separated by an isolation area. The main surfaces of the isolation area and of the first active area form a plane. The hybrid substrate is obtained from a source substrate successively comprising layers made from a first and second semiconductor materials separated by an isolation layer. A single etching mask is used to pattern the isolation area, first active area and second active area. The main surface of the first active area is released thereby forming voids in the source substrate. The etching mask is eliminated above the first active area. A first isolation material is deposited, planarized and etched until the main surface of the first active area is released.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 20, 2015
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Claire Fenouillet-Béranger, Stéphane Denorme, Philippe Coronel
  • Publication number: 20150014809
    Abstract: A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 8927374
    Abstract: A method for fabricating a semiconductor device is disclosed. A strained material is formed in a cavity of a substrate and adjacent to an isolation structure in the substrate. The strained material has a corner above the surface of the substrate. The disclosed method provides an improved method for forming the strained material adjacent to the isolation structure with an increased portion in the cavity of the substrate to enhance carrier mobility and upgrade the device performance. The improved formation method is achieved by providing a treatment to redistribute at least a portion of the corner in the cavity.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lilly Su, Pang-Yen Tsai, Tze-Liang Lee, Chii-Horng Li, Yen-Ru Lee, Ming-Hua Yu
  • Patent number: 8927362
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a first region and a second region. The semiconductor device further includes a first buffer layer formed over the substrate and between first and second isolation regions in the first region and a second buffer layer formed over the substrate and between first and second isolation regions in the second region. The semiconductor device further includes a first fin structure formed over the first buffer layer and between the first and second isolation regions in the first region and a second fin structure formed over the second buffer layer and between the first and second isolation regions in the second region. The first buffer layer includes a top surface different from a top surface of the second buffer layer.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Cary Chia-Chiung Lo, Huicheng Chang, Chun Chung Su
  • Patent number: 8927373
    Abstract: Methods of fabricating non-planar transistors including current enhancing structures are provided. The methods may include forming first and second fin structures directly adjacent each other overlying a substrate including an isolation layer. The methods may further include forming a spacer on the isolation layer including first and second recesses exposing upper surfaces of the first and second fin structures respectively. The spacer may cover an upper surface of the isolation layer between the first and second recesses. The methods may also include forming first and second current enhancing structures contacting the first and second fin structures, respectively, in the first and second recesses.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co, Ltd.
    Inventors: Mark S. Rodder, Kang-ill Seo
  • Publication number: 20140367784
    Abstract: An integrated circuit includes a substrate and at least one NMOS transistor having, in the substrate, an active region surrounded by an insulating region. The insulating region is formed to includes at least one area in which the insulating region has two insulating extents that are mutually separated from each other by a separation region formed by a part of the substrate.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 18, 2014
    Applicant: STMicroelectronics (Rousset) SAS
    Inventors: Christian Rivero, Giulhem Bouton, Pascal Fornara
  • Patent number: 8900974
    Abstract: High yield substrate assembly. In accordance with a first method embodiment, a plurality of piggyback substrates are attached to a carrier substrate. The edges of the plurality of the piggyback substrates are bonded to one another. The plurality of piggyback substrates are removed from the carrier substrate to form a substrate assembly. The substrate assembly is processed to produce a plurality of integrated circuit devices on the substrate assembly. The processing may use manufacturing equipment designed to process wafers larger than individual instances of the plurality of piggyback substrates.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: December 2, 2014
    Assignee: Invensas Corporation
    Inventors: Liang Wang, Ilyas Mohammed, Masud Beroz
  • Patent number: 8895369
    Abstract: A superjunction semiconductor device is provided having at least one column of a first conductivity type and at least one column of a second conductivity type extending from a first main surface of a semiconductor substrate toward a second main surface of the semiconductor substrate opposed to the first main surface. The at least one column of the second conductivity type has a first sidewall surface proximate the at least one column of the first conductivity type and a second sidewall surface opposed to the first sidewall surface. A termination structure is proximate the second sidewall surface of the at least one column of the second conductivity type. The termination structure includes a layer of dielectric of an effective thickness and consumes about 0% of the surface area of the first main surface. Methods for manufacturing superjunction semiconductor devices and for preventing surface breakdown are also provided.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Icemos Technology Ltd.
    Inventor: Xu Cheng
  • Patent number: 8895403
    Abstract: A transistor, a method for fabricating a transistor, and a semiconductor device comprising the transistor are disclosed in the present invention. The method for fabricating a transistor may comprise: providing a substrate and forming a first insulating layer on the substrate; defining a first device area on the first insulating layer; forming a spacer surrounding the first device area on the first insulating layer; defining a second device area on the first insulating layer, wherein the second device area is isolated from the first device area by the spacer; and forming transistor structures in the first and second device area, respectively. The method for fabricating a transistor of the present invention greatly reduces the space required for isolation, significantly decreases the process complexity, and greatly reduces fabricating cost.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: November 25, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8883578
    Abstract: Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Chun-chen Yeh, Tenko Yamashita
  • Patent number: 8883607
    Abstract: Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 11, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Rajesh Kelekar, Aaron Francis, Gregory Lim
  • Patent number: 8877601
    Abstract: An active device region is formed in and on a semiconductor substrate. An interconnect layer is formed over the active device region, wherein the interconnect layer comprises a first dielectric material having a first dielectric constant, a first metal interconnect in the first dielectric material, and a second metal interconnect in the first dielectric material and laterally spaced apart from the first metal interconnect. A portion of the first dielectric material is removed such that a remaining portion of the first dielectric material remains within the interconnect layer, wherein the removed portion is removed from a location between the first and second metal interconnects. The location between the first and second metal interconnects from which the portion of the first dielectric material was removed is filled with a second dielectric material having a second dielectric constant, the second dielectric constant being higher than the first dielectric constant.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Publication number: 20140315370
    Abstract: Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventors: Rajesh Kelekar, Aaron T. Francis, Gregory P. Lim
  • Publication number: 20140312457
    Abstract: An electronic apparatus includes a semiconductor substrate, a circuit block disposed in and supported by the semiconductor substrate and comprising an inductor, and a discontinuous noise isolation guard ring surrounding the circuit block. The discontinuous noise isolation guard ring includes a metal ring supported by the semiconductor substrate and a ring-shaped region disposed in the semiconductor substrate, having a dopant concentration level, and electrically coupled to the metal ring, to inhibit noise in the semiconductor substrate from reaching the circuit. The metal ring has a first gap and the ring-shaped region has a second gap.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 23, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Qiang Li, Olin L. Hartin, Sateh Jalaleddine, Radu M. Secareanu, Michael J. Zunino
  • Patent number: 8865561
    Abstract: A method of forming a semiconductor device is disclosed. The method includes forming a set of doped regions in a substrate; forming a crystalline dielectric layer on the substrate, the crystalline dielectric layer including an epitaxial oxide; forming a semiconductor layer on the crystalline dielectric layer, the semiconductor layer and the crystalline dielectric layer forming an extremely thin semiconductor-on-insulator (ETSOI) structure; and forming a set of devices on the semiconductor layer, wherein at least one device in the set of devices is formed over a doped region.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Thomas N. Adam, Bruce B. Doris, Ali Khakifirooz, Alexander Reznicek, Raghavasimhan Sreenivasan
  • Patent number: 8865560
    Abstract: System and method for forming lightly doped drain (LDD) extensions. An embodiment comprises forming a gate electrode on a semiconductor fin and forming a dielectric layer over the gate electrode. The gate electrode is then etched to expose a portion of the semiconductor fin. The exposed portions of the fin comprise the LDD extensions.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shien Mor, Hsiao-Chu Chen, Mu-Chi Chiang
  • Publication number: 20140306317
    Abstract: Fin height control techniques for FINFET fabrication are disclosed. The technique includes a method for controlling the height of plurality of fin structures to achieve uniform height thereof relative to a top surface of isolation material located between fin structures on a semiconductor substrate. The isolation material located between fin structures may be selectively removed after treatment to increase its mechanical strength such as by, for example, annealing and curing. A sacrificial material may be deposited over the isolation material between the fin structures in a substantially uniform thickness. The top portion of the fin structures may be selectively removed to achieve a uniform planar surface over the fin structures and sacrificial material. The sacrificial material may then be selectively removed to achieve a uniform fin height relative to the isolation material.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 16, 2014
    Applicant: Globalfoundries Inc.
    Inventor: Nicholas V. LICAUSI
  • Patent number: 8859375
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate includes isolation regions defining a device region. The high voltage device includes: a drift region, located in the device region, doped with second conductive type impurities; a gate in the device region and on the surface of the substrate; and a second conductive type source and drain in the device region, at different sides of the gate respectively. From top view, the concentration of the second conductive type impurities of the drift region is distributed substantially periodically along horizontal and vertical directions.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: October 14, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Patent number: 8853051
    Abstract: Generally, the present disclosure is directed to various methods of recessing an active region and an adjacent isolation structure in a common etch process. One illustrative method disclosed includes forming an isolation structure in a semiconducting substrate, wherein the isolation structure defines an active area in the substrate, forming a patterned masking layer above the substrate, wherein the patterned masking layer exposes the active area and at least a portion of the isolation structure for further processing, and performing a non-selective dry etching process on the exposed active area and the exposed portion of the isolation structure to define a recess in the substrate and to remove at least some of the exposed portions of the isolation structure.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Frank Jakubowski, Jorg Radecker, Frank Ludwig
  • Publication number: 20140291729
    Abstract: A memory unit includes a substrate, at least one charge storage element, at least one first recessed access element, and an isolation portion. The substrate has a surface and the first recessed access element is disposed in an active area of the substrate and extending from the surface into the substrate. The first recessed access element is electrically connected to the charge storage element and induces in the substrate a first depletion region. The isolation portion is adjacent to the active area and extending from the surface into the substrate. The isolation portion includes a trenched isolating barrier and a second recessed access element. The second recessed access element is disposed in the trenched isolating barrier and induces in the substrate a second depletion region merging with the first depletion region.
    Type: Application
    Filed: June 19, 2013
    Publication date: October 2, 2014
    Inventors: TZUNG-HAN LEE, YAW-WEN HU, CHUNG-YUAN LEE, HSU CHIANG, SHENG-HSIUNG WU, HUNG CHANG LIAO
  • Patent number: 8847195
    Abstract: Memory cells and methods of forming the same and devices including the same. The memory cells have first and second electrodes. An amorphous semiconductor material capable of electronic switching and having a first band gap is between the first and second electrodes. A material is in contact with the semiconductor material and having a second band gap, the second band gap greater than the first band gap.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: September 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Chandra Mouli, Roy Meade