Formation Of Electrically Isolated Lateral Semiconductive Structure Patents (Class 438/400)
  • Publication number: 20140120691
    Abstract: A method of fabricating a semiconductor device is provided. A fin portion protruding from a substrate is formed. A sacrificial layer is formed to cover top and side surfaces of the fin portion. A gate dielectric is formed on the fin portion by oxidizing the sacrificial layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: May 1, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: SangHyun Lee, Sungsam Lee, Dongkak Lee
  • Patent number: 8709905
    Abstract: An oven comprising a controller that operates the oven in a food cooking mode and in energy saving mode in which energy consumption of a heater and one or more fans is reduced. In the food cooking mode the controller maintains heated air flow at a first set temperature. In the energy saving mode the controller maintains the heated air flow at a second set temperature, which is less than the first set temperature, thereby reducing energy consumed by the heater. In the energy mode, controller also operates the fan that circulates the heater air and a cooling fan at reduced speeds, thereby reducing energy consumption of both fans.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 29, 2014
    Assignee: Manitowoc Foodservice UK Limited
    Inventor: David Crayfourd
  • Patent number: 8710587
    Abstract: An LDMOS device includes a gate which is formed on and/over over a substrate; a source and a drain which are arranged to be separated from each other on both sides of the substrate with the gate interposed therebetween; and a field oxide film formed to have a step between the gate and the drain. The LDMOS device further includes a drift region formed of first conduction type impurity ions between the gate and the drain in the substrate; and at least one internal field ring formed in the drift region by selectively implanting a second conduction type impurity in accordance with the step of the field oxide film.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 29, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Nam-Chil Moon, Jae-Hyun Yoo, Jong-Min Kim
  • Publication number: 20140110668
    Abstract: An electronic device includes a substrate supporting mobile charge carriers, insulative features formed on the substrate surface to define first and second substrate areas on either side of the insulative features, the first and second substrate areas being connected by an elongate channel defined by the insulative features, the channel providing a charge carrier flow path in the substrate from the first area to the second area, the conductivity between the first and second substrate areas being dependent upon the potential difference between the areas. The mobile charge carriers can be within at least two modes in each of the three dimensions within the substrate. The substrate can be an organic material. The mobile charge carriers can have a mobility within the range 0.01 cm2/Vs to 100 cm2/Vs, and the electronic device may be an RF device. Methods for forming such devices are also described.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: PRAGMATIC PRINTING LIMITED
    Inventor: Aimin Song
  • Patent number: 8703574
    Abstract: There is disclosed a package comprising at least an integrated circuit embedded in an electrically non-conductive moulded material. The moulded material includes at least one moulded pattern on at least one surface thereof, and at least one electrically conductive track in the pattern. There is further provided at least one capacitive, inductive or galvanic component electrically connecting between at least two parts of the at least one electrically conductive track. The conductive track can be configured as an antenna, and the capacitive, inductive or galvanic component is used to adjust tuning and other characteristics of the antenna.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 22, 2014
    Assignee: Microsoft Corporation
    Inventors: Michael Gaynor, Brian Collins
  • Patent number: 8703575
    Abstract: The instant disclosure relates to a method of forming an isolation area. The method includes the steps of: providing a substrate having a first type of ion dopants, where the substrate has a plurality of trenches formed on the cell areas and the isolation area between the cell areas of the substrate, with the side walls of the trenches having an oxidation layer formed thereon and the trenches are filled with a metallic structure; removing the metallic structure from the trenches of the isolation area; implanting a second type of ions into the substrate under the trenches of the isolation area; and filling all the trenches with an insulating structure, where the trenches of the isolation area are filled up fully by the insulating structure to form a non-metallic isolation area.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8698237
    Abstract: A superjunction LDMOS and its manufacturing method are disclosed. The superjunction LDMOS includes a diffused well in which a superjunction structure is formed; the superjunction structure has a depth less than the depth of the diffused well. The manufacturing method includes: provide a semiconductor substrate; form a diffused well in the semiconductor substrate by photolithography and high temperature diffusion; form an STI layer above the diffused well; form a superjunction structure in the diffused well by ion implantation, wherein the superjunction structure has a depth less than the depth of the diffused well; and form the other components of the superjunction LDMOS by subsequent conventional CMOS processes. The method is compatible with conventional CMOS processes and do not require high-cost and complicated special processes.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: April 15, 2014
    Assignee: Grace Semiconductor Manufacturing Corporation
    Inventor: Shushu Tang
  • Patent number: 8685832
    Abstract: Provided is a trench filling method, which includes: forming a silicon oxide liner on a semiconductor substrate with trenches formed therein, the trenches including narrow-width portions having a first minimum isolation width and wide-width portions having a second minimum isolation width being wider than the first minimum isolation width; forming an oxidation-barrier film on the silicon oxide liner; forming a silicon liner on the oxidation-barrier film; filling the narrow-width portions with a first filling material; filling the wide-width portions with a second filling material; and oxidizing the silicon liner.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 1, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Masahisa Watanabe
  • Publication number: 20140070365
    Abstract: Embodiments of semiconductor devices (e.g., RF devices) include a substrate, an isolation structure, an active device, a lead, and a circuit. The isolation structure is coupled to the substrate, and includes an opening. An active device area is defined by a portion of the substrate surface that is exposed through the opening. The active device is coupled to the substrate surface within the active device area. The circuit is electrically coupled between the active device and the lead. The circuit includes one or more elements positioned outside the active device area (e.g., physically coupled to the isolation structure and/or under the lead). The elements positioned outside the active device area may include elements of an envelope termination circuit and/or an impedance matching circuit. Embodiments also include method of manufacturing such semiconductor devices.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Inventors: Lakshminarayan Viswanathan, Jeffrey K. Jones, Scott D. Marshall
  • Publication number: 20140070358
    Abstract: A methodology is disclosed enabling the formation of silicon trench profiles for devices, such as SSRW FETs, having a resultant profile that enables desirable epitaxial growth of semiconductor materials. Embodiments include forming a trench in a silicon wafer between STI regions, thermally treating the silicon surfaces of the trench, and forming Si:C in the trench. The process eliminates a need for an isotropic silicon etch to achieve a desirable flat surface. Further, the flat bottom surface provides a desirable surface for epitaxial growth of semiconductor materials, such as Si:C.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yi Qi, Puneet Khanna, Srikanth Samavedam, Vara G. Vakada, Michael P. Ganz, Sri Charan Vemula, Laegu Kang, Bharat V. Krishnan
  • Publication number: 20140070311
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary method of fabricating a semiconductor device on a doped region of semiconductor material having a first conductivity type involves forming a first region having a second conductivity type within the doped region, forming a body region having the first conductivity type overlying the first region, and forming a drift region having the second conductivity type within the doped region, wherein at least a portion of the drift region abuts at least a portion of the first region. In one embodiment, the dopant concentration of the first region is less than the dopant concentration of the body region and different from the dopant concentration of the drift region.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongning Yang, Zhihong Zhang, Jiang-Kai Zuo
  • Publication number: 20140054548
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been-Yih Jin, Robert S. Chau
  • Patent number: 8642441
    Abstract: A method for fabricating a memory device with a self-aligned trap layer and rounded active region corners is disclosed. In the present invention, an STI process is performed before any of the charge-trapping and top-level layers are formed. Immediately after the STI process, the sharp corners of the active regions are exposed. Because these sharp corners are exposed at this time, they are available to be rounded through any number of known rounding techniques. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, the charge-trapping structure and other layers can be formed by a self-aligned process.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: February 4, 2014
    Assignee: Spansion LLC
    Inventors: Tim Thurgate, Shenqing Fang, Kuo-Tung Chang, YouSeok Suh, Meng Ding, Hidehiko Shiraiwa, Amol Joshi, Harpreet Sachar, David Matsumoto, Lovejeet Singh, Chih-Yuh Yang
  • Publication number: 20140030866
    Abstract: A method for depositing a polysilazane on a semiconductor wafer is provided. The method includes steps of disposing a silazane onto the semiconductor wafer, and heating the silazane to form the polysilazane on the semiconductor wafer. An apparatus for preparing a polysilazane on a semiconductor wafer is also provided.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: You-Hua Chou, Chih-Tsung Lee, Min-Hao Hong, Ming-Huei Lien, Chih-Jen Wu, Chen-Ming Huang
  • Patent number: 8637982
    Abstract: A semiconductor fabrication technique cuts loops formed in a spacer pattern. The spacer pattern is a split loop pattern which generally includes a symmetric arrangement of one or more loops in each of four quadrants which are defines with respect to a reference point. The loops can be peaks or trenches. Each quadrant can include one loop, or multiple nested loops. Further, the space pattern includes a single cross, or multiple nested crosses, which extend between the loops. A cut out area is defined which extends outward from the reference point to closed ends of the loops, also encompassing a central portion of the cross. When a metal wiring layer pattern is formed using the spacer pattern with the cut out area, metal wiring is excluded from the cut out area. The loop ends in the metal wiring layer are broken and can be used as independent active lines.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 28, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Kiyonori Ogisu, Yosuke Takahata
  • Publication number: 20140022844
    Abstract: An electronic device can include a tunnel structure that includes a first electrode, a second electrode, and tunnel dielectric layer disposed between the electrodes. In a particular embodiment, the tunnel structure may or may not include an intermediate doped region that is at the primary surface, abuts a lightly doped region, and has a second conductivity type opposite from and a dopant concentration greater than the lightly doped region. In another embodiment, the electrodes have opposite conductivity types. In a further embodiment, an electrode can be formed from a portion of a substrate or well region, and the other electrode can be formed over such portion of the substrate or well region.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Inventors: Thierry Coffi Herve Yao, Gregory James Scott
  • Patent number: 8633085
    Abstract: Doped semiconductor back gate regions self-aligned to active regions are formed by first patterning a top semiconductor layer and a buried insulator layer to form stacks of a buried insulator portion and a semiconductor portion. Oxygen is implanted into an underlying semiconductor layer at an angle so that oxygen-implanted regions are formed in areas that are not shaded by the stack or masking structures thereupon. The oxygen implanted portions are converted into deep trench isolation structures that are self-aligned to sidewalls of the active regions, which are the semiconductor portions in the stacks. Dopant ions are implanted into the portions of the underlying semiconductor layer between the deep trench isolation structures to form doped semiconductor back gate regions. A shallow trench isolation structure is formed on the deep trench isolation structures and between the stacks.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Ghavam G. Shahidi
  • Patent number: 8623739
    Abstract: A method of manufacturing a semiconductor device includes forming a resist pattern on a first region on a substrate, bringing a descum solution including an acid source into contact with the resist pattern and with a second region of the substrate, decomposing resist residues remaining on the second region of the substrate by using acid obtained from the acid source in the descum solution and removing the decomposed resist residues and the descum solution from the substrate.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: January 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-rae Lee, Yool Kang, Kyung-hwan Yoon, Hyoung-hee Kim, So-ra Han, Tae-hoi Park
  • Publication number: 20140001595
    Abstract: An integrated circuit is provided. The integrated circuit includes a first contact disposed over a first source/drain region, a second contact disposed over a second source/drain region, a polysilicon disposed over a gate, the polysilicon interposed between the first contact and the second contact, a first polysilicon contact bridging the polysilicon and the first contact within an active region, and an output structure electrically coupled to the first polysilicon contact.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Chung Lu, Li-Chun Tien, Hui-Zhong Zhuang
  • Publication number: 20140001560
    Abstract: Isolated and bulk semiconductor devices formed on a same bulk substrate and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed on a bulk substrate. The first semiconductor body has an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed on an isolation pedestal. The isolation pedestal is disposed on the bulk substrate. The second semiconductor body has an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Harry Gomez
  • Publication number: 20140001548
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region of the second conductivity type, and the diode circuit is connected between the isolation structure and the body region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: November 7, 2012
    Publication date: January 2, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: WEIZE CHEN, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
  • Patent number: 8617937
    Abstract: A method of forming fins for fin-shaped field effect transistor (finFET) devices includes forming a plurality of sacrificial mandrels over a semiconductor substrate. The plurality of sacrificial mandrels are spaced apart from one another by a first distance along a first direction, and by a second distance along a second direction. Spacer layers are formed on sidewalls of the sacrificial mandrels such that portions of the spacer layers between sacrificial mandrels along the first direction are merged together. Portions of the spacer layers between sacrificial mandrels along the second direction remain spaced apart. The sacrificial mandrels are removed. A pattern corresponding to the spacer layers is transferred into the semiconductor layers to form a plurality of semiconductor fins. Adjacent pairs of fins are merged with one another at locations corresponding to the merged spacer layers.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: December 31, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam Shahidi
  • Publication number: 20130341722
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing an ultrathin body (UTB) fully depleted silicon-on-insulator (FDSOI) substrate. A PFET temporary gate structure and an NFET temporary gate structure are formed on the substrate. The method implants ions to form lightly doped active areas around the gate structures. A diffusionless annealing process is performed on the active areas. Further, a compressive strain region is formed around the PFET gate structure and a tensile strain region is formed around the NFET gate structure.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Ralf Illgen, Stefan Flachowsky
  • Publication number: 20130334584
    Abstract: A device and methods for forming a device are disclosed. The device includes a substrate having first, second and third regions. The first region includes a memory cell region, the second region includes a peripheral circuit region and the third region includes a logic region. A memory cell which includes a memory transistor having a first stack height (TSM) is disposed in the first region. A high voltage (HV) transistor having a second stack height (TSHV) is disposed in the second region and a logic transistor having a third stack height (TSL) is disposed in the third region. The first, second and third stack heights are substantially the same across the substrate.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Yan Zhe TANG, Shyue Seng TAN, Ying Keung LEUNG, Elgin QUEK
  • Publication number: 20130330889
    Abstract: The present disclosure provides many different embodiments of fabricating a FinFET device that provide one or more improvements over the prior art. In one embodiment, a method of fabricating a FinFET includes providing a semiconductor substrate and a plurality of dummy fins and active fins on the semiconductor substrate. A predetermined group of dummy fins is removed.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Joanna ChawYane Yin, Chi-Hsi Wu, Kuo-Chiang Ting, Kuang-Hsin Chen
  • Patent number: 8603889
    Abstract: A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata A. Camillo-Castillo, James S. Dunn, David L. Harame, Anthony K. Stamper
  • Publication number: 20130316514
    Abstract: A method of fabricating a gate includes sequentially forming an insulation layer and a conductive layer on substantially an entire surface of a substrate. The substrate has a device isolation layer therein and a top surface of the device isolation layer is higher than a top surface of the substrate. The method includes planarizing a top surface of the conductive layer and forming a gate electrode by patterning the insulation layer and the conductive layer.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-Pil KIM, Young-Goan JANG, Dong-Won KIM, Hag-Ju CHO
  • Publication number: 20130316513
    Abstract: Multigate transistor devices and methods of their fabrication are disclosed. In one method, a substrate including a semiconductor upper layer and a lower layer beneath the upper layer is provided. The lower layer has a rate of transformation into a dielectric that is higher than a rate of transformation into a dielectric of the upper layer when the upper and lower layers are subjected to dielectric transformation conditions. Fins are formed in the upper layer, and the lower layer beneath the fins is transformed into a dielectric material to electrically isolate the fins. In addition, a gate structure is formed over the fins to complete the multigate transistor device.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: VEERARAGHAVAN S. BASKER, EFFENDI LEOBANDUNG, TENKO YAMASHITA, CHUN-CHEN YEH
  • Publication number: 20130309836
    Abstract: A semiconductor device includes an isolation layer formed on a semiconductor substrate; an active region defined by the isolation layer; at least one gate line formed to overlap with the active region; at least one first active tab formed on a first interface of the active region which overlaps with the gate line; and a first gate tab formed on a second interface facing away from the first interface in such a way as to project from the gate line.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 21, 2013
    Applicant: SK hynix Inc.
    Inventor: Jong Su KIM
  • Publication number: 20130307021
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a first region and a second region. The semiconductor device further includes a first buffer layer formed over the substrate and between first and second isolation regions in the first region and a second buffer layer formed over the substrate and between first and second isolation regions in the second region. The semiconductor device further includes a first fin structure formed over the first buffer layer and between the first and second isolation regions in the first region and a second fin structure formed over the second buffer layer and between the first and second isolation regions in the second region. The first buffer layer includes a top surface different from a top surface of the second buffer layer.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Cary Chia-Chiung Lo, Huicheng Chang, Chun Chung Su
  • Patent number: 8586445
    Abstract: A method for manufacturing a suspended membrane in a single-crystal semiconductor substrate, including the steps of: forming in the substrate an insulating ring delimiting an active area, removing material from the active area, successively forming in the active area a first and a second layers, the second layer being a single-crystal semiconductor layer, etching a portion of the internal periphery of said ring down to a depth greater than the thickness of the second layer, removing the first layer so that the second layer formed a suspended membrane anchored in the insulating ring.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 19, 2013
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Stéphane Monfray, Thomas Skotnicki
  • Patent number: 8587085
    Abstract: There is provided a technology capable of providing desirable operation characteristics in a field effect transistor formed in an active region surrounded by a trench type element isolation part. An element isolation part includes trench type element isolation films, diffusion preventive films each including a silicon film or a silicon oxide film, and having a thickness of 10 to 20 nm formed over the top surfaces of the trench type element isolation films, and silicon oxide films each with a thickness of 0.5 to 2 nm formed over the top surfaces of the diffusion preventive films. The composition of the diffusion preventive film is SiOx (0?x<2). Each composition of the trench type element isolation films and the silicon oxide films is set to be SiO2.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: November 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Katsuyuki Horita
  • Patent number: 8587084
    Abstract: A sensor array is integrated onto the same chip as core logic. The sensor array uses a first polysilicon and the core logic uses a second polysilicon. The first polysilicon is etched to provide a tapered profile edge in the interface between the sensor array and the core logic regions to avoid an excessive step. Amorphous carbon can be deposited over the interface region without formation of voids, thus providing for improved manufacturing yield and reliability.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chi Fu, Ching-Sen Kuo, Wen-Chen Lu, Chih-Yuan Chen
  • Publication number: 20130292701
    Abstract: Techniques for fabricating a field effect transistor (FET) device having a doped core and an undoped or counter-doped epitaxial shell are provided. In one aspect, a method of fabricating a FET device is provided. The method includes the following steps. A wafer is provided having a semiconductor material selected from the group consisting of silicon, silicon germanium and silicon carbon. At least one fin core is formed in the wafer. Ion implantation is used to dope the fin core. Corners of the fin core are reshaped to make the corners rounded or faceted. An epitaxial shell is grown surrounding the fin core, wherein the epitaxial shell includes a semiconductor material selected from the group consisting of silicon, silicon germanium and silicon carbon.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 7, 2013
    Applicant: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Siyuranga O. Koswatta, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20130285192
    Abstract: A circuit compatible with dynamic random access memories (DRAM) and static random access memories (SRAM) is disclosed. The circuit includes a substrate having a first conductivity type. A trench isolation region (850,852) is formed in the substrate. The trench isolation region has sides and a bottom formed below a face of the substrate. A first semiconductor region having a second conductivity type (868) is formed at the bottom of the trench isolation region. A second semiconductor region having the second conductivity type (870) is formed separately from the first semiconductor region adjacent a first side of trench isolation region and in conductive contact with the first semiconductor region.
    Type: Application
    Filed: May 22, 2013
    Publication date: October 31, 2013
    Inventor: Robert Newton Rountree
  • Patent number: 8569828
    Abstract: A nonvolatile semiconductor storage device including a number of memory cells formed on a semiconductor substrate, each of the memory cells has a tunnel insulating film, a charge storage layer, a block insulating film, and a gate electrode which are formed in sequence on the substrate. The gate electrode is structured such that at least first and second gate electrode layers are stacked. The dimension in the direction of gate length of the second gate electrode layer, which is formed on the first gate electrode layer, is smaller than the dimension in the direction of gate length of the first gate electrode layer.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Publication number: 20130277742
    Abstract: A semiconductor structure comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate and extending down from a surface of the substrate; a first well having the first conductive type and a second well having the second conductive type both formed in the deep well and extending down from the surface of the substrate, and the second well spaced apart from the first well; a gate electrode formed on the substrate and disposed between the first and second wells; an isolation extending down from the surface of the substrate and disposed between the gate electrode and the second well; a conductive plug including a first portion and a second portion electrically connected to each other, and the first portion electrically connected to the gate electrode, and the second portion penetrating into the isolation.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chiu-Te Lee, Ke-Feng Lin, Shu-Wen Lin, Kun-Huang Yu, Chih-Chung Wang, Te-Yuan Wu
  • Publication number: 20130273709
    Abstract: Generally, the present disclosure is directed to various methods of recessing an active region and an adjacent isolation structure in a common etch process. One illustrative method disclosed includes forming an isolation structure in a semiconducting substrate, wherein the isolation structure defines an active area in the substrate, forming a patterned masking layer above the substrate, wherein the patterned masking layer exposes the active area and at least a portion of the isolation structure for further processing, and performing a non-selective dry etching process on the exposed active area and the exposed portion of the isolation structure to define a recess in the substrate and to remove at least some of the exposed portions of the isolation structure.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Frank Jakubowski, Jorg Radecker, Frank Ludwig
  • Publication number: 20130273710
    Abstract: A device includes a number of fins. Some of the fins have greater heights than other fins. This allows the selection of different drive currents and/or transistor areas.
    Type: Application
    Filed: May 2, 2013
    Publication date: October 17, 2013
    Inventors: Willy Rachmady, Justin S. Sandford, Michael K. Harper
  • Patent number: 8557674
    Abstract: Provided are a high voltage semiconductor device in which a field shaping layer is formed on the entire surface of a semiconductor substrate and a method of fabricating the same. Specifically, the high voltage semiconductor device includes a first conductivity-type semiconductor substrate. A second conductivity-type semiconductor layer is disposed on a surface of the semiconductor substrate, and a first conductivity-type body region is formed in semiconductor layer. A second conductivity-type source region is formed in the body region. A drain region is formed in the semiconductor layer and is separated from the body region. The field shaping layer is formed on the entire surface of the semiconductor layer facing the semiconductor layer.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 15, 2013
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Yong-cheol Choi, Chang-ki Jeon, Min-suk Kim
  • Publication number: 20130264643
    Abstract: A field effect transistor including a substrate which includes, a fin structure, the fin structure having a top surface. The field effect transistor further including an isolation in the substrate and a source/drain (S/D) recess cavity below the top surface of the substrate disposed between the fin structure and the isolation structure. The S/D recess cavity includes a lower portion, the lower portion further includes a first strained layer, a first dielectric film and a second dielectric film, wherein the first strained layer is disposed between the first dielectric film and the second dielectric film. The S/D recess cavity further includes an upper portion including a second strained layer overlying the first strained layer, wherein a ratio of a height of the upper portion to a height of the lower portion ranges from about 0.8 to about 1.2.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Tsung-Lin LEE, Chih-Hao CHANG, Chih-Hsin KO, Feng YUAN, Jeff J. XU
  • Patent number: 8551858
    Abstract: A method for fabricating a memory device with U-shaped trap layers over rounded active region corners is disclosed. In the present invention, an STI process is performed before the charge-trapping layer is formed. Immediately after the STI process, the sharp corners of the active regions are exposed, making them available for rounding. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, a bottom oxide layer, nitride layer, and sacrificial top oxide layer are formed. An organic bottom antireflective coating applied to the charge trapping layer is planarized. Now the organic bottom antireflective coating, sacrificial top oxide layer, and nitride layer are etched, without etching the sacrificial top oxide layer and nitride layer over the active regions. After the etching the charge trapping layer has a cross-sectional U-shape appearance.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 8, 2013
    Assignee: Spansion LLC
    Inventors: Shenqing Fang, Angela Hui, Shao-Yu Ting, Inkuk Kang, Gang Xue
  • Publication number: 20130256829
    Abstract: An AlGaN/GaN HEMT includes a compound semiconductor stack structure; an element isolation structure which demarcates an element region on the compound semiconductor stack structure; a first insulating film which is formed on the element region and is not formed on the element isolation structure; a second insulating film which is formed on at least the element isolation structure and is higher in hydrogen content than the first insulating film; and a gate electrode which is formed on the element region of the compound semiconductor stack structure via the second insulating film.
    Type: Application
    Filed: March 17, 2013
    Publication date: October 3, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Toshihide KIKKAWA
  • Publication number: 20130249045
    Abstract: A semiconductor device having a via structure in a stress relief layer is provided. The semiconductor device may include an isolation layer on the circuit region, a stress relief layer on the via region, and a via structure in the stress relief layer and the substrate. The stress relief layer may have a thickness larger than that of the isolation layer and a stepped cross section.
    Type: Application
    Filed: February 8, 2013
    Publication date: September 26, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sin-Woo Kang, Jang-Ho Kim, Woon-Seob Lee, Jong-Hoon Cho, Sung-Dong Cho, Yeong-Lyeol Park
  • Publication number: 20130244396
    Abstract: A method of fabricating a fin field effect transistor may include forming a fin portion protruding from a substrate, forming a device isolation layer to cover a lower sidewall of the fin portion, forming a semiconductor layer using an epitaxial method to cover an upper sidewall and a top surface of the fin portion, selectively etching an upper portion of the device isolation layer to form a gap region between a top surface of the device isolation layer and a bottom surface of the semiconductor layer, and forming a gate electrode pattern on the semiconductor layer to fill the gap region. Related devices are also described.
    Type: Application
    Filed: November 26, 2012
    Publication date: September 19, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chang-Woo OH, Sang-Hoon Lee, Sung-Bong Kim, Hyung-Suk Lee
  • Publication number: 20130244392
    Abstract: Provided are methods of forming field effect transistors. The method includes preparing a substrate with a first region and a second region, forming fin portions on the first and second regions, each of the fin portions protruding from the substrate and having a first width, forming a first mask pattern to expose the fin portions on the first region and cover the fin portions on the second region, and changing widths of the fin portions provided on the first region.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 19, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chang Woo OH, Shincheol Min, Jongwook Lee, Choongho Lee
  • Publication number: 20130235654
    Abstract: Embodiments disclosed herein may relate to forming a base contact layout in a memory device.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Antonino Rigano, Fabio Pellizzer, Gianfranco Capetti
  • Publication number: 20130234246
    Abstract: A device includes a semiconductor substrate, a channel region in the semiconductor substrate having a first conductivity type, and a composite drift region in the semiconductor substrate, having a second conductivity type. The composite drift region includes a first drift region and a second drift region spaced from the channel region by the first drift region. The device further includes a drain region in the semiconductor substrate, spaced from the channel region by the composite drain region, and having the second conductivity type. The first drift region has a dopant concentration profile with a first concentration level where adjacent the channel region and a second concentration level where adjacent the second drift region, the first concentration level being higher than the second concentration level. In some embodiments, the first and second drift regions are stacked vertically, with the first drift region being shallower than the second drift region.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 12, 2013
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Patent number: 8530299
    Abstract: An electronic device including an integrated circuit can include a buried conductive region and a semiconductor layer overlying the buried conductive region, and a vertical conductive structure extending through the semiconductor layer and electrically connected to the buried conductive region. The integrated circuit can further include a doped structure having an opposite conductivity type as compared to the buried conductive region, lying closer to an opposing surface than to a primary surface of the semiconductor layer, and being electrically connected to the buried conductive region. The integrated circuit can also include a well region that includes a portion of the semiconductor layer, wherein the portion overlies the doped structure and has a lower dopant concentration as compared to the doped structure. In other embodiment, the doped structure can be spaced apart from the buried conductive region.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 10, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 8530999
    Abstract: A semiconductor component with straight insulation trenches formed in a semiconductor material providing semiconductor areas laterally insulated from each other. Each insulation trench has a uniform width along its longitudinal direction represented by a central line. The semiconductor component has an intersecting area into which at least three of the straight insulation trenches lead. A center of the intersecting area is defined as a point of intersection of the continuations of the center lines. A central semiconductor area disposed in the intersecting area is connected with one of the semiconductor areas and contains the center of the intersecting area.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: September 10, 2013
    Assignee: X-FAB Semiconductor Foundries AG
    Inventors: Ralf Lerner, Uwe Eckoldt