Formation Of Electrically Isolated Lateral Semiconductive Structure Patents (Class 438/400)
  • Patent number: 8530329
    Abstract: A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Soon Choi, Jun-Won Lee, Gil-Heyun Choi, Eun-Kee Hong, Hong-Gun Kim, Ha-Young Yi
  • Publication number: 20130228878
    Abstract: A semiconductor device and method for fabricating a semiconductor device are disclosed.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pai-Chieh WANG, Yimin HUANG
  • Publication number: 20130228876
    Abstract: System and method for forming lightly doped drain (LDD) extensions. An embodiment comprises forming a gate electrode on a semiconductor fin and forming a dielectric layer over the gate electrode. The gate electrode is then etched to expose a portion of the semiconductor fin. The exposed portions of the fin comprise the LDD extensions.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shien Mor, Hsiao-Chu Chen, Mu-Chi Chiang
  • Publication number: 20130228892
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate, isolation regions disposed in the semiconductor substrate, and device regions disposed between the isolation regions in the semiconductor substrate. The device further includes a first line disposed on the device regions and the isolation regions, a line width of the first line on the isolation regions being larger than a line width of the first line on the device regions.
    Type: Application
    Filed: August 21, 2012
    Publication date: September 5, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Shinya ARAI
  • Patent number: 8524569
    Abstract: In a method of forming an isolation layer, first and second trenches are formed on a substrate. The first and the second trenches have first and second widths, respectively, and the second width is greater than the first width. A second isolation layer pattern partially fills the second trench. A first isolation layer pattern and the third isolation layer pattern are formed. The first isolation layer pattern fills the first trench, and the third isolation layer pattern is formed on the second isolation layer pattern and fills a remaining portion of the second trench.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Hyuk Kang, Jung-Won Lee, Bo-Un Yoon, Kun-Tack Lee
  • Patent number: 8513087
    Abstract: Processes for forming isolation structures for semiconductor devices include forming a submerged floor isolation region and a filed trench which together enclose an isolated pocket of the substrate. One process aligns the trench to the floor isolation region. In another process a second, narrower trench is formed in the isolated pocket and filled with a dielectric material while the dielectric material is deposited so as to line the walls and floor of the first trench. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: August 20, 2013
    Assignee: Advanced Analogic Technologies, Incorporated
    Inventors: Donald R. Disney, Richard K. Williams
  • Publication number: 20130210212
    Abstract: Methods of manufacturing semiconductor devices are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece, and forming a protective material over a bottom surface and edges of the workpiece. A top surface of the workpiece is processed. The protective material protects the edges and the bottom surface of the workpiece during the processing of the top surface of the workpiece.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Weng, Wei-Sheng Yun, Shao-Ming Yu, Hsin-Chih Chen, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20130200453
    Abstract: Semiconductor devices having a bipolar transistor, a CMOS transistor, a drain extension MOS transistor and a double diffused MOS transistor are provided. The semiconductor device includes a semiconductor substrate including a logic region in which a logic device is formed and a high voltage region in which a high power device is formed, trenches in the semiconductor substrate, isolation layers in respective ones of the trenches, and at least one field insulation layer disposed at a surface of the semiconductor substrate in the high voltage region. Related methods are also provided.
    Type: Application
    Filed: December 6, 2012
    Publication date: August 8, 2013
    Applicant: SK HYNIX INC.
    Inventor: SK hynix Inc.
  • Publication number: 20130203226
    Abstract: A semiconductor process is provided, including following steps. A polysilicon layer is formed on a substrate. An asymmetric dual-side heating treatment is performed to the polysilicon layer, wherein a power for a forntside heating is different from a power for a backside heating.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chan-Lon Yang, Ching-Nan Hwang, Chi-Heng Lin, Chun-Yao Yang, Ger-Pin Lin, Ching-I Li
  • Publication number: 20130196481
    Abstract: A method that includes forming a masking element on a semiconductor substrate and overlying a defined space. A first feature and a second feature are each formed on the semiconductor substrate. The space interposes the first and second features and extends from a first end of the first feature to a first end of the second feature. A third feature is then formed adjacent and substantially parallel the first and second features. The third feature extends at least from the first end of the first feature to the first end of the second feature.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 1, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd. ("TSMC")
    Inventors: Chia Ying Lee, Chih-Yuan Ting, Jyu-Horng Shieh
  • Publication number: 20130196482
    Abstract: A method of manufacturing a semiconductor device including performing a first thermal processing a silicon substrate in a first atmosphere and at a first temperature to remove an oxide film above a surface of the silicon substrate, and after the first thermal processing, performing a second thermal processing the silicon substrate in a second atmosphere containing hydrogen and at a second temperature lower than the first temperature to terminate the surface of the silicon substrate with hydrogen.
    Type: Application
    Filed: November 30, 2012
    Publication date: August 1, 2013
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: FUJITSU SEMICONDUCTOR LIMITED
  • Publication number: 20130187114
    Abstract: A non-volatile memory device includes a plurality of non-volatile memory cells. Each of the non-volatile memory cells includes a first electrode, a diode steering element, a storage element located in series with the diode steering element, a second electrode, and a nano-rail electrode having a width of 15 nm or less.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: SanDisk 3D LLC
    Inventors: James K. Kai, Henry Chien, George Matamis, Vinod R. Purayath
  • Publication number: 20130189825
    Abstract: A method for producing one or plural trenches in a device comprising a substrate of the semiconductor on insulator type formed by a semiconductive support layer, an insulating layer resting on the support layer and a semiconductive layer resting on said insulating layer, the method comprising steps of: a) localised doping of a given portion of said insulating layer through an opening in a masking layer resting on the fine semiconductive layer, b) selective removal of said given doped area at the bottom of said opening.
    Type: Application
    Filed: July 23, 2012
    Publication date: July 25, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT.
    Inventors: Yannick LE TIEC, Laurent GRENOUILLET, Maud VINET
  • Publication number: 20130187206
    Abstract: A device includes a semiconductor fin, a gate dielectric on sidewalls of the semiconductor fin, a gate electrode over the gate dielectric, and isolation regions. The isolation regions include a first portion on a side of the semiconductor fin, wherein the first portion is underlying and aligned to a portion of the gate electrode. The semiconductor fin is over a first top surface of the first portion of the isolation regions. The isolation regions further include second portions on opposite sides of the portion of the gate electrode. The second top surfaces of the second portions of the isolation regions are higher than the first top surface of the isolation regions.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shien Mor, Hsiao-Chu Chen, Mu-Chi Chiang
  • Publication number: 20130187196
    Abstract: An integrated circuit includes a first and a second field effect transistor structure. The first field effect transistor structure includes a first gate electrode structure and a first field electrode structure. The second field effect transistor structure includes a second gate electrode structure and a second field electrode structure. The first and the second gate electrode structures are electrically separated from each other. The first and the second field electrode structures are separated from each other.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Christoph Kadow
  • Patent number: 8492239
    Abstract: In one exemplary embodiment, a method includes: providing a structure having a first layer overlying a substrate, where the first layer includes a dielectric material having a plurality of pores; applying a filling material to an exposed surface of the first layer; heating the structure to a first temperature to enable the filling material to homogeneously fill the plurality of pores; after filling the plurality of pores, performing at least one first process on the structure; after performing the at least one first process, removing the filling material from the plurality of pores by heating the structure to a second temperature to decompose the filling material; and after removing the filling material from the plurality of pores, performing at least one second process on the structure, where the at least one second process is performed at a third temperature that is greater than the second temperature.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert L. Bruce, Geraud Jean-Michel Dubois, Theo J. Frot, Teddie P. Magbitang, Sampath Purushothaman, David L. Rath, Willi Volksen
  • Publication number: 20130178043
    Abstract: A method includes providing a substrate having an N+ type layer; forming a P type region in the N+ type layer disposed within the N+ type layer; forming a first deep trench isolation structure extending through a silicon layer and into the N+ type layer to a depth that is greater than a depth of the P type layer; forming a dynamic RAM FET in the silicon layer, forming a first logic/static RAM FET in the silicon layer above the P type region, the P type region being functional as a P-type back gate of the first logic/static RAM FET; and forming a first contact through the silicon layer and an insulating layer to electrically connect to the N+ type layer and a second contact through the silicon layer and the insulating layer to electrically connect to the P type region.
    Type: Application
    Filed: September 19, 2012
    Publication date: July 11, 2013
    Applicant: International Business Machines Corporation
    Inventor: International Business Machines Corporation
  • Publication number: 20130171802
    Abstract: Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 4, 2013
    Applicant: Intermolecular Inc.
    Inventor: Intermolecular Inc.
  • Publication number: 20130171801
    Abstract: Semiconductor devices, and methods of fabricating the same, include forming device isolation regions in a substrate to define active regions, forming gate trenches in the substrate to expose the active regions and device isolation regions, conformally forming a preliminary gate insulating layer including silicon oxide on the active regions exposed in the grate trenches, nitriding the preliminary gate insulating layer using a radio-frequency bias having a frequency of about 13.56 MHz and power between about 100 W and about 300 W to form a nitrided preliminary gate insulating layer including silicon oxynitride, forming a gate electrode material layer on the nitride preliminary gate insulating layer, partially removing the nitrided preliminary gate insulating layer and the gate electrode material layer to respectively form a gate insulating layer and a gate electrode layer, and forming a gate capping layer on the gate electrode layer to fill the gate trenches.
    Type: Application
    Filed: September 5, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tai-Su PARK, Jin-Hyuk CHOI, Sang-Chul HAN, Jung-Sup OH, Young-Dong LEE
  • Publication number: 20130164906
    Abstract: Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Rajesh Kelekar, Aaron Francis, Gregory Lim
  • Publication number: 20130164907
    Abstract: Provided are methods of forming a thin film and methods of fabricating a semiconductor device including the same. The thin film forming methods may include supplying an organic silicon source to form a silicon seed layer on a lower layer, the silicon seed layer including silicon seed particles adsorbed on the lower layer, and supplying an inorganic silicon source to deposit a silicon film on the lower layer adsorbed with the silicon atoms.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.
  • Publication number: 20130153913
    Abstract: A transistor, a method for fabricating a transistor, and a semiconductor device comprising the transistor are disclosed in the present invention. The method for fabricating a transistor may comprise: providing a substrate and forming a first insulating layer on the substrate; defining a first device area on the first insulating layer; forming a spacer surrounding the first device area on the first insulating layer; defining a second device area on the first insulating layer, wherein the second device area is isolated from the first device area by the spacer; and forming transistor structures in the first and second device area, respectively. The method for fabricating a transistor of the present invention greatly reduces the space required for isolation, significantly decreases the process complexity, and greatly reduces fabricating cost.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 20, 2013
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Publication number: 20130154051
    Abstract: A trench is formed in a semiconductor substrate by depositing an etch mask on the substrate having an opening, etching of the trench through the opening, and doping the walls of the trench. The etching step includes a first phase having an etch power set to etch the substrate under the etch mask, and a second phase having an etch power set smaller than the power of the first phase. Further, the doping of the walls of the trench is applied through the opening of the etch mask.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 20, 2013
    Applicant: STMICROELECTRONICS (CROLLES 2) SAS
    Inventor: STMICROELECTRONICS (CROLLES 2) SAS
  • Publication number: 20130154014
    Abstract: A semiconductor device and a method for fabricating the same are disclosed. The method for fabricating the semiconductor device includes forming an shallow trench isolation (STI) in a substrate, sequentially forming an oxide layer and a nitride layer over the substrate, patterning the nitride layer and the oxide layer to expose a portion of the substrate adjacent to the STI layer, forming a field oxide layer contacting the STI layer in the exposed portion of the substrate, removing the nitride layer, etching a portion of the patterned oxide layer to form a first gate oxide layer contacting the field oxide layer, forming a second gate oxide layer over the substrate, and forming a gate pattern over the field oxide layer, the first gate oxide layer, and the second gate oxide layer.
    Type: Application
    Filed: March 19, 2012
    Publication date: June 20, 2013
    Inventor: Soonyeol PARK
  • Publication number: 20130149835
    Abstract: A semiconductor device includes a first device isolation pattern defining a first active region, a second device isolation pattern defining a second active region, a first gate disposed on the first active region, the first gate including a gate insulating pattern of a first thickness and a second gate disposed on the second active region, the second gate including a gate insulating pattern of a second thickness greater than the first thickness. A top surface of the first device isolation pattern is curved down toward the first active region such that the first active region has an upper portion protruded from the top surface and rounded corners.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 13, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.
  • Publication number: 20130140667
    Abstract: A semiconductor structure includes a substrate, a first power device and a second power device in the substrate, at least one isolation feature between the first and second power device, and a trapping feature adjoining the at least one isolation feature in the substrate.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alex KALNITSKY, Chih-Wen YAO, Jun CAI, Ruey-Hsin LIU, Hsiao-Chin TUAN
  • Publication number: 20130143385
    Abstract: Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
    Type: Application
    Filed: January 25, 2013
    Publication date: June 6, 2013
    Inventors: Titash Rakshit, Martin Giles, Ravi Pillarisetty, Jack T. Kavalieros
  • Publication number: 20130140668
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Mark E. Stidham, Robert M. Rassel
  • Patent number: 8455306
    Abstract: Embodiments include methods for forming an electrostatic discharge (ESD) protection device coupled across input-output (I/O) and common terminals of a core circuit, where the ESD protection device includes first and second merged bipolar transistors. A base of the first transistor serves as collector of the second transistor and the base of the second transistor serves as collector of the first transistor, the bases having, respectively, first and second widths. A first resistance is coupled between an emitter and base of the first transistor and a second resistance is coupled between an emitter and base of the second transistor. ESD trigger voltage Vt1 and holding voltage Vh can be independently optimized by choosing appropriate base widths and resistances. By increasing Vh to approximately equal Vt1, the ESD protection is more robust, especially for applications with narrow design windows, for example, with operating voltage close to the degradation voltage.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 4, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Rouying Zhan
  • Publication number: 20130134518
    Abstract: A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, William F. Clark, JR., Richard A. Phelps, BethAnn Rainey, Yun Shi, James A. Slinkman
  • Publication number: 20130126816
    Abstract: Some embodiments include methods of forming memory cells. A series of rails is formed to include bottom electrode contact material. Sacrificial material is patterned into a series of lines that cross the series of rails. A pattern of the series of lines is transferred into the bottom electrode contact material. At least a portion of the sacrificial material is subsequently replaced with top electrode material. Some embodiments include memory arrays that contain a second series of electrically conductive lines crossing a first series of electrically conductive lines. Memory cells are at locations where the electrically conductive lines of the second series overlap the electrically conductive lines of the first series. First and second memory cell materials are within the memory cell locations. The first memory cell material is configured as planar sheets and the second memory cell material is configured as upwardly-opening containers.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, Scott E. Sills, John K. Zahurak
  • Publication number: 20130122684
    Abstract: A semiconductor process for removing oxide layers comprises the steps of providing a substrate having an isolation structure and a pad oxide layer, performing a dry cleaning process and a wet cleaning process to remove said pad oxide layer, forming a sacrificial oxide layer on said substrate, and performing an ion implantation process to form doped well regions on both sides of the isolation structure.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Inventors: Teng-Chun Hsuan, Ted Ming-Lang Guo, Chin-Cheng Chien
  • Publication number: 20130122686
    Abstract: A method includes forming a hard mask over a substrate, patterning the hard mask to form a first plurality of trenches, and filling a dielectric material into the first plurality of trenches to form a plurality of dielectric regions. The hard mask is removed from between the plurality of dielectric regions, wherein a second plurality of trenches is left by the removed hard mask. An epitaxy step is performed to grow a semiconductor material in the second plurality of trenches.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 16, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Tai Chang, Yi-Shan Chen, Hsin-Chih Chen, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 8440539
    Abstract: A semiconductor fabrication process includes forming a hard mask, e.g., silicon nitride, over an active layer of a silicon on insulator (SOI) wafer, removing a portion of the hard mask and the active layer to form a trench, and forming an isolation dielectric in the trench where the dielectric exerts compressive strain on a channel region of the active layer. Forming the dielectric may include performing a thermal oxidation. Before performing the thermal oxidation, semiconductor structures may be formed, e.g., by epitaxy, on sidewalls of the trench. The structures may be silicon or a silicon compound, e.g., silicon germanium. During the thermal oxidation, the semiconductor structures are consumed. In the case of a silicon germanium, the germanium may diffuse during the thermal oxidation to produce a silicon germanium channel region.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 14, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Michael A. Mendicino
  • Patent number: 8435905
    Abstract: The present invention provides a manufacturing method of a semiconductor device that has a rapid film formation rate and high productivity, and to provide a substrate processing apparatus.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 7, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Sadayoshi Horii, Hideharu Itatani, Kazuhiro Harada
  • Publication number: 20130099349
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate having a first surface and a second surface, and having a LSI on the first surface of the semiconductor substrate, a first insulating layer with an opening, the first insulating layer provided on the first surface of the semiconductor substrate, a conductive layer on the opening, the conductive layer being connected to the LSI, and a via extending from a second surface of the semiconductor substrate to the conductive layer through the opening, the via having a size larger than a size of the opening in a range from the second surface to a first interface between the semiconductor substrate and the first insulating layer, and having a size equal to the size of the opening in the opening.
    Type: Application
    Filed: August 24, 2012
    Publication date: April 25, 2013
    Inventor: Akiko Nomachi
  • Patent number: 8426291
    Abstract: A method includes forming first insulating films on first and second faces of a substrate, removing the first insulating film on the second face, forming polysilicon films on the first insulating film on the first face and the second face, forming second insulating films on the polysilicon films on the first face and the second face, etching the second insulating film on the first face using a mask including an opening, removing the second insulating films on the first face and the second face, removing the polysilicon film on the side of the first face and forming a passivation film which protects the polysilicon film on the side of the second face so that the polysilicon film on the side of the second face is not removed in the polysilicon film removing step, after the polysilicon film forming step and before the polysilicon film removing step.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 23, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toru Nakazawa
  • Publication number: 20130093026
    Abstract: A semiconductor apparatus includes fin field-effect transistor (FinFETs) having shaped fins and regular fins. Shaped fins have top portions that may be smaller, larger, thinner, or shorter than top portions of regular fins. The bottom portions of shaped fins and regular fins are the same. FinFETs may have only one or more shaped fins, one or more regular fins, or a mixture of shaped fins and regular fins. A semiconductor manufacturing process to shape one fin includes forming a photolithographic opening of one fin, optionally doping a portion of the fin, and etching a portion of the fin.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen WANN, Ling-Yen YEH, Chi-Yuan SHIH, Yi-Tang LIN, Chih-Sheng CHANG, Chi-Wen LIU
  • Publication number: 20130095580
    Abstract: A method for formation of a semiconductor device including a first mono-crystalline layer comprising first transistors and first alignment marks, the method comprising forming a doped layer within a wafer, forming a second mono-crystalline layer on top of the first mono-crystalline layer by transferring at least a portion of the doped layer using layer transfer step, and processing second transistors on the second mono-crystalline layer comprising a step of forming a gate dielectric, wherein the second transistors are horizontally oriented.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Ze'ev Wurman
  • Patent number: 8420460
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a high-leakage dielectric formed over an active region of a FET and a low-leakage dielectric formed on the active region and adjacent the high-leakage dielectric. The low-leakage dielectric has a lower leakage than the high-leakage dielectric. Also provided is a structure and method of fabricating the structure.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20130087883
    Abstract: A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: James Mathew, Brett D. Lowe, Yunjun Ho, H. Jim Fulford, Jie Sun, Zhaoli Sun
  • Publication number: 20130087880
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Application
    Filed: October 8, 2012
    Publication date: April 11, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: TEXAS INSTRUMENTS INCORPORATED
  • Publication number: 20130089959
    Abstract: An integrated circuit structure includes a fin field-effect transistor (FinFET) including a semiconductor fin over and adjacent to insulation regions; and a source/drain region over the insulation regions. The source/drain region includes a first and a second semiconductor region. The first semiconductor region includes silicon and an element selected from the group consisting of germanium and carbon, wherein the element has a first atomic percentage in the first semiconductor region. The first semiconductor region has an up-slant facet and a down-slant facet. The second semiconductor region includes silicon and the element. The element has a second atomic percentage lower than the first atomic percentage. The second semiconductor region has a first portion on the up-slant facet and has a first thickness. A second portion of the second semiconductor region, if any, on the down-slant facet has a second thickness smaller than the first thickness.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, L
  • Publication number: 20130082350
    Abstract: A silicon-on-insulator device having multiple crystal orientations is disclosed. In one embodiment, the silicon-on-insulator device includes a substrate layer, an insulating layer disposed on the substrate layer, a first silicon layer, and a strained silicon layer. The first silicon layer has a first crystal orientation and is disposed on a portion of the insulating layer, and the strained silicon layer is disposed on another portion of the insulating layer and has a crystal orientation different from the first crystal orientation.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 4, 2013
    Inventor: Infineon Technologies AG
  • Publication number: 20130082326
    Abstract: A superjunction LDMOS and its manufacturing method are disclosed. The superjunction LDMOS includes a diffused well in which a superjunction structure is formed; the superjunction structure has a depth less than the depth of the diffused well. The manufacturing method includes: provide a semiconductor substrate; form a diffused well in the semiconductor substrate by photolithography and high temperature diffusion; form an STI layer above the diffused well; form a superjunction structure in the diffused well by ion implantation, wherein the superjunction structure has a depth less than the depth of the diffused well; and form the other components of the superjunction LDMOS by subsequent conventional CMOS processes. The method is compatible with conventional CMOS processes and do not require high-cost and complicated special processes.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 4, 2013
    Applicant: GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventor: GRACE SEMICONDUCTOR MANUFACTURING C
  • Publication number: 20130082309
    Abstract: A method for fabricating a semiconductor device is disclosed. A strained material is formed in a cavity of a substrate and adjacent to an isolation structure in the substrate. The strained material has a corner above the surface of the substrate. The disclosed method provides an improved method for forming the strained material adjacent to the isolation structure with an increased portion in the cavity of the substrate to enhance carrier mobility and upgrade the device performance. The improved formation method is achieved by providing a treatment to redistribute at least a portion of the corner in the cavity.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lilly SU, Pang-Yen TSAI, Tze-Liang LEE, Chii-Horng LI, Yen-Ru LEE, Ming-Hua YU
  • Publication number: 20130071992
    Abstract: A semiconductor process is provided. An insulating layer is formed on a semiconductor substrate. A portion of the insulating layer is removed, so as to form a plurality of isolation structures and a mesh opening disposed between the isolation structures and exposing the semiconductor substrate. By performing a selective growth process, a semiconductor layer is formed from a surface of the semiconductor substrate exposed by the mesh opening, so that the isolation structures are disposed in the semiconductor layer.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Kuo-Hui Su, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20130071995
    Abstract: A method of manufacturing a semiconductor device is disclosed. The exemplary method includes providing a substrate having a source region and a drain region. The method further includes forming a first recess in the substrate within the source region and a second recess in the substrate within the drain region. The first recess has a first plurality of surfaces and the second recess has a second plurality of surfaces. The method also includes epi-growing a semiconductor material in the first and second recesses and, thereafter, forming shallow isolation (STI) features in the substrate.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mei-Hsuan Lin, Chih-Kang Chao, Chih-Hsun Lin, Ling-Sung Wang
  • Patent number: 8399334
    Abstract: A method of manufacturing a nano device by directly printing a plurality of NW devices in a desired shape on a predesigned gate substrate. The method includes preparing an NW solution, preparing a building block for performing decaling onto the substrate by carrying an NW device, forming the NW device by connecting electrodes of each of building block units of the building block using NWs by dropping the NW solution between the electrodes and then through dielectrophoresis, visually inspecting the numbers of NW bridges that are formed between the electrodes of each of the building block units through the dielectrophoresis, grouping the building block units according to the numbers, and decaling the NW device formed on each of the building block units onto the gate substrate by bringing the grouped building block units into contact with the predesigned gate substrate and then detaching the grouped building block units.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 19, 2013
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jae Min Myoung, Hong Koo Baik, Tae Il Lee
  • Publication number: 20130062698
    Abstract: An electronic device can include a nonvolatile memory cell, wherein the nonvolatile memory cell can include an access transistor, a read transistor, and an antifuse component coupled to the access transistor and the read transistor. In an embodiment, the read transistor can include a gate electrode, and the antifuse component can include a first electrode and a second electrode overlying the first electrode. The gate electrode and the first electrode can be parts of the same gate member. In another embodiment, the access transistor can include a gate electrode, and the antifuse component can include a first electrode, an antifuse dielectric layer, and a second electrode. The electronic device can further include a conductive member overlying the antifuse dielectric layer and the gate electrode of the access transistor, wherein the conductive member is configured to electrically float. Processes for making the same are also disclosed.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Inventors: Moshe Agam, Thierry Coffi Herve Yao