Contacting Multiple Semiconductive Regions (i.e., Interconnects) Patents (Class 438/618)
  • Patent number: 8163644
    Abstract: A process is disclosed for high density indium bumping of microchips by using an innovative template wafer upon which the bumps are initially fabricated. Once fabricated, these bumps are transferred to the microchip, after which can be hybridized to another microchip. Such a template wafer is reusable, and thus provides an economical way to fabricate indium bumps. Reusability also eliminates nonuniformities in bump shape and size in serial processing of separate microchips, which is not the case for other indium bump fabrication processes. Such a fabrication process provides a way to form relatively tall indium bumps and accomplishes this without the standard thick photoresist liftoff process. The described process can be suitable for bump pitches under 10 microns, and is only limited by the resolution of the photolithography equipment used.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 24, 2012
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Justin K. Markunas, Eric F. Schulte
  • Patent number: 8158510
    Abstract: A semiconductor device is made by depositing an encapsulant material between first and second plates of a chase mold to form a molded substrate. A first conductive layer is formed over the molded substrate. A resistive layer is formed over the first conductive layer. A first insulating layer is formed over the resistive layer. A second insulating layer is formed over the first insulating layer, resistive layer, first conductive layer, and molded substrate. A second conductive layer is formed over the first insulating layer, resistive layer, and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. A bump is formed over the second conductive layer. The first conductive layer, resistive layer, first insulating layer, and second conductive layer constitute a MIM capacitor. The second conductive layer is wound to exhibit inductive properties.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: April 17, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 8158505
    Abstract: A method for manufacturing a semiconductor device includes forming a semiconductor wafer including a plurality of interconnect layers, the semiconductor wafer including: a plurality of chip-composing portions; a dicing region separating the chip-composing portions from each other; and a plurality of inter-chip interconnects electrically connecting adjacent ones of the chip-composing portions and formed in one of the interconnect layers and in the dicing region; a dummy metal pattern comprising a plurality of dummy metals, the dummy metal pattern being formed in at least one of the interconnect layers over or below the inter-chip interconnects only in an area corresponded to a region where the inter-chip interconnects are arranged and corresponded to a region therearound; and forming semiconductor chips by dicing the dicing region so as to divide the chip-composing portions.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Shinichi Uchida, Yoshitsugu Kawashima, Hiroshi Ise
  • Publication number: 20120080661
    Abstract: According to one embodiment, a graphene interconnection includes an insulating film, a catalyst film, and a graphene layer. An insulating film includes an interconnection trench. A catalyst film is formed in the interconnection trench and filling at least a portion of the interconnection trench. A graphene layer is formed on the catalyst film in the interconnection trench, and including graphene sheets stacked in a direction perpendicularly to a bottom surface of the interconnection trench.
    Type: Application
    Filed: August 24, 2011
    Publication date: April 5, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuro Saito, Makoto Wada, Akihiro Kajita, Atsuko Sakata
  • Publication number: 20120080662
    Abstract: According to one embodiment, a graphene interconnection includes a first insulating film, a first catalyst film, and a first graphene layer. A first insulating film includes an interconnection trench. A first catalyst film is formed on the first insulating film on both side surfaces of the interconnection trench. A first graphene layer is formed on the first catalyst film on the both side surfaces of the interconnection trench, and including graphene sheets stacked in a direction perpendicularly to the both side surfaces.
    Type: Application
    Filed: August 24, 2011
    Publication date: April 5, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuro Saito, Makoto Wada, Akihiro Kajita
  • Publication number: 20120080805
    Abstract: A semiconductor device according to the invention includes a first Cu interconnect and a first barrier insulating film. a The first barrier insulating film is provided on the first Cu interconnect, and prevents Cu from being diffused from the first Cu interconnect. In addition, the semiconductor device includes a second Cu interconnect and a second barrier insulating film on the first barrier insulating film. The second barrier insulating film is provided on a first Cu interconnect, and prevents Cu from being diffused from the second Cu interconnect. The first and second barrier insulating films are made of a silicon-based insulating film having a branched alkyl group and a carbon-carbon double bond.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Applicants: Renesas Electronics Corporation, Taiyo Nippon Sanso Corporation, Tri Chemical Laboratories Inc.
    Inventors: Chikako Ohto, Tatsuya Usami, Shuji Nagano, Hideharu Shimizu, Tatsuya Ohira, Takeshi Kada
  • Publication number: 20120080793
    Abstract: Certain embodiments pertain to local interconnects formed by subtractive patterning of blanket layer of tungsten or other conductive material. The grain sizes of tungsten or other deposited metal can be grown to relatively large dimensions, which results in increased electrical conductivity due to, e.g., reduced electron scattering at grain boundaries as electrons travel from one grain to the next during conduction.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 5, 2012
    Inventors: Michal Danek, Juwen Gao, Ronald A. Powell, Aaron R. Fellis
  • Patent number: 8148199
    Abstract: A microelectronic assembly is provided which can include an element including a first dielectric layer and a second dielectric layer overlying the first dielectric layer, the second dielectric layer having an exposed surface defining an exposed major surface of the element. A plurality of substantially rigid metal posts can project beyond the exposed surface, the metal posts having ends remote from the exposed surface. The microelectronic assembly can include a microelectronic device which has bond pads and overlies the element. The microelectronic device can have a major surface which confronts the posts. Connections electrically connect the ends of the metal posts with the bond pads of the microelectronic device.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: April 3, 2012
    Assignee: Tessera, Inc.
    Inventor: Joseph Fjelstad
  • Patent number: 8148201
    Abstract: Described herein is an electronic device in which one or more planar interconnect structure are interposed between two substrates each incorporating a hybrid circuit. The planar interconnect structure has a plurality of conductive traces formed on one of its faces for electrically connecting sets of interconnection points of each of the hybrid circuits.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: April 3, 2012
    Assignee: Starkey Laboratories, Inc.
    Inventors: Craig Dumas, Vijaykumar Sundermurthy
  • Patent number: 8148257
    Abstract: One or more embodiments relate to a method of forming an electronic device, comprising: providing a workpiece; forming a first barrier layer over the workpiece; forming an intermediate conductive layer over the first barrier layer; forming a second barrier layer over the intermediate conductive layer; forming a seed layer over the second barrier layer; removing a portion of the seed layer to leave a remaining portion of the seed layer and to expose a portion of the second barrier layer; and electroplating a fill layer on the remaining portion of the seed layer.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 3, 2012
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Gottfried Beer, Joern Plagmann, Jens Pohl, Werner Robl, Rainer Steiner, Mathias Vaupel
  • Publication number: 20120068344
    Abstract: A selective conductive cap is deposited on exposed metal surfaces of a metal line by electroless plating selective to exposed underlying dielectric surfaces of a metal interconnect structure. A dielectric material layer is deposited on the selective conductive cap and the exposed underlying dielectric layer without a preclean. The dielectric material layer is planarized to form a horizontal planar surface that is coplanar with a topmost surface of the selective conductive cap. A preclean is performed and a dielectric cap layer is deposited on the selective conductive cap and the planarized surface of the dielectric material layer. Because the interface including a surface damaged by the preclean is vertically offset from the topmost surface of the metal line, electromigration of the metal in the metal line along the interface is reduced or eliminated.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: Griselda Bonilla, Lawrence A. Clevenger, Elbert E. Huang, Satyanarayana V. Nitta, Shom Ponoth
  • Patent number: 8138083
    Abstract: An interconnect structure having improved electromigration (EM) reliability is provided. The inventive interconnect structure avoids a circuit dead opening that is caused by EM failure by incorporating a EM preventing liner at least partially within a metal interconnect. In one embodiment, a “U-shaped” EM preventing liner is provided that abuts a diffusion barrier that separates conductive material from the dielectric material. In another embodiment, a space is located between the “U-shaped” EM preventing liner and the diffusion barrier. In yet another embodiment, a horizontal EM liner that abuts the diffusion barrier is provided. In yet a further embodiment, a space exists between the horizontal EM liner and the diffusion barrier.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Ping-Chuan Wang, Yun-Yu Wang
  • Patent number: 8138082
    Abstract: A semiconductor device includes an interconnect having electrically conductive portions and a dielectric layer made of a first dielectric material. A trench is formed in the dielectric layer. The exposed portions of the dielectric layer which form the side walls of the trench are removed. A dielectric liner is then deposited on the side walls of the trench, the liner being made of a second dielectric material.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 20, 2012
    Assignees: STMicroelectronics (Crolles 2) SAS, Koninkljike Philips Electronics N.V.
    Inventors: Joaquin Torres, Vincent Arnal, Laurent-Georges Gosset, Wim Besling
  • Patent number: 8134234
    Abstract: Back end of line interconnect structures and methods of making a back end of line interconnect structure are provided. The back end of line interconnect structure contains a first interconnect layer containing a first conductive feature and a first dielectric layer; a first cap layer over the first interconnect layer, and a second interconnect layer over the first cap layer. The second interconnect layer contains a second conductive feature, a second dielectric layer, and two or more barrier layers therebetween. The two or more barrier layers contain a first barrier layer over the second dielectric layer and a MnOx-containing barrier layer over the first barrier layer. Containing the MnOx-containing barrier layer, the back end of line interconnect structure can prevent and/or mitigate diffusion of conductive material of the second conductive feature therethrough.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: March 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Atsunobu Isobayashi
  • Patent number: 8129769
    Abstract: A semiconductor device having a 6F2 memory cell whose size is defined by a numerical value of a design rule F, wherein: lower electrodes of capacitors included in the memory cell are supported by a support film; the support film is formed as a pattern combining a first support pattern (14x) linearly extending in a first direction and a second support pattern (14y) linearly extending in a second direction that crosses to the first direction; the support film is arranged such that the intervals of the first and second support patterns are both equal to or greater than 1.5F; and the interval of one of the first and second support patterns is greater than the interval of the other one of the first and second support patterns.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: March 6, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Tomohiro Kadoya
  • Patent number: 8129272
    Abstract: A strengthened semiconductor die substrate and package are disclosed. The substrate may include contact fingers formed with nonlinear edges. Providing a nonlinear contour to the contact finger edges reduces the mechanical stress exerted on the semiconductor die which would otherwise occur with straight edges to the contact fingers. The substrate may additionally or alternatively include plating traces extending at an angle from the contact fingers. Extending at an angle, at least the ends of the plating traces at the edge of the substrate are covered beneath a lid in which the semiconductor package is encased. Thus, when in use with a host device, contact between the ends of the plating traces beneath the lid and contact pins of the host device is avoided.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 6, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Hem Takiar, Cheeman Yu, Ken Jian Ming Wang, Chin-Tien Chiu, Han-Shiao Chen, Chih-Chin Liao
  • Patent number: 8129268
    Abstract: A method of fabricating a lower bottom electrode for a memory element and a semiconductor structure having the same includes forming a dielectric layer over a semiconductor substrate having a plurality of conductive contacts formed therein to be connected to access circuitry, forming a dielectric cap layer over exposed portions of the dielectric layer and the conductive contacts, depositing a planarizing material over the dielectric cap layer, etching a via to an upper surface of each conductive contact, removing the planarizing material, depositing electrode material over the dielectric cap layer and within the vias, the electrode material contacting an upper surface of each conductive contact, and planarizing the electrode material to form a lower bottom electrode over each conductive contact.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Matthew J. Breitwisch
  • Publication number: 20120049375
    Abstract: A method and a system for routing electrical connections of a plurality of chips are disclosed. In one embodiment, a semiconductor device is provided comprising at least one semiconductor chip, at least one routing plane comprising at least one routing line, and at least one connecting line electrically coupled to the at least one routing line and at least one semiconductor chip.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Inventors: Thorsten MEYER, Gottfried BEER, Christian GEISSLER, Thomas ORT, Klaus PRESSEL, Bernd WAIDHAS, Andreas WOLTER
  • Publication number: 20120049374
    Abstract: A semiconductor device has first and second interconnect structures in first and second columns, respectively, of an array. Each of the first and second interconnect structures has a reference voltage node and first, second, third, and fourth conductors that are coupled to each other and formed at a first layer, a second layer, a third layer, and a fourth layer, respectively, over a substrate having a plurality of devices defining a plurality of bit cells. The reference voltage node of each interconnect structure provides a respectively separate reference voltage to a bit cell corresponding to said interconnect structure. None of the first, second, third, and fourth conductors in either interconnect structure is connected to a corresponding conductor in the other interconnect structure. The second layer is above the first layer, the third layer is above the second layer, and the fourth layer is above the third layer.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jacklyn CHANG, Kuoyuan HSU, Derek C. TAO
  • Patent number: 8124522
    Abstract: Provided are methods of stabilizing an underlying dielectric diffusion barrier during deposition and ultraviolet (UV) processing of an overlying dielectric layer. Methods include modulating the optical properties reduces the effects of UV radiation on the dielectric diffusion barrier layer. The dielectric diffusion barrier can be made to absorb less UV radiation. A dielectric layer with UV absorbing properties may also be added on top of the diffusion barrier layer so less UV is transmitted. Both methods result in reduced interaction between UV radiation and the dielectric diffusion barrier.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 28, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Hui-Jung Wu, Kimberly Shafi, Kaushik Chattopadhyay, Keith Fox, Tom Mountsier, Girish Dixit, Bart van Schravendijk, Elizabeth Apen
  • Patent number: 8124527
    Abstract: The present invention generally relates to the formation of a micro-electromechanical system (MEMS) cantilever switch in a complementary metal oxide semiconductor (CMOS) back end of the line (BEOL) process. The cantilever switch is formed in electrical communication with a lower electrode in the structure. The lower electrode may be either blanket deposited and patterned or simply deposited in vias or trenches of the underlying structure. The excess material used for the lower electrode is then planarized by chemical mechanical polishing or planarization (CMP). The cantilever switch is then formed over the planarized lower electrode.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 28, 2012
    Assignee: Cavendish Kinetics, Inc.
    Inventors: Joseph Damian Gordon Lacey, Thomas L. Maguire, Vikram Joshi, Dennis J. Yost
  • Patent number: 8124521
    Abstract: A method of fabricating an electrical contact through a through hole in a substrate, wherein the through hole is at least in part filled with a liquid conductive material and the solidified liquid conductive material provides an electrical contact through the through hole.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: February 28, 2012
    Assignee: Qimonda AG
    Inventors: Harry Hedler, Roland Irsigler, Volker Lehmann, Judith Lehmann, legal representative, Thorsten Meyer, Octavio Trovarelli
  • Patent number: 8125085
    Abstract: A semiconductor device includes an interlayer film formed over a semiconductor substrate. A groove is formed in the interlayer film. A wiring formed in the groove is a copper alloy including copper and a metal element. An oxide layer of the metal element is formed over the surface of the wiring. The oxide layer is formed in a first region along a grain boundary of a copper crystal and a second region surrounded by the grain boundary, over the surface of the wiring. The oxide layer formed in the first region has a thickness greater than that of the oxide layer formed in the second region.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuyoshi Maekawa, Kenichi Mori, Kazuyuki Omori, Yuki Koyama
  • Patent number: 8119522
    Abstract: Method of forming wires in integrated circuits. The methods include forming a wire in a first dielectric layer on a substrate; forming a dielectric barrier layer over the wire and the first dielectric layer; forming a second dielectric layer over the barrier layer; forming one or more patterned photoresist layers over the second dielectric layer; performing a reactive ion etch to etch a trench through the second dielectric layer and not through the barrier layer; performing a second reactive ion etch to extend the trench through the barrier layer; and after performing the second reaction ion etch, removing the one or more patterned photoresist layers, a last formed patterned photoresist layer removed using a reducing plasma or a non-oxidizing plasma. The methods include forming wires by similar methods to a metal-insulator-metal capacitor.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Peter J. Lindgren, Anthony K. Stamper
  • Patent number: 8120183
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a first conductive layer disposed on a top surface of the substrate. A high resistivity layer is formed over the substrate and the first conductive layer. A dielectric layer is deposited over the substrate, first conductive layer and high resistivity layer. A portion of the dielectric layer, high resistivity layer, and first conductive layer forms a capacitor stack. A first passivation layer is formed over the dielectric layer. A second conductive layer is formed over the capacitor stack and a portion of the first passivation layer. A first opening is etched in the dielectric layer to expose a surface of the high resistivity layer. A third and fourth conductive layer is deposited over the first opening in the dielectric layer and a portion of the first passivation layer.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: February 21, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye
  • Patent number: 8119524
    Abstract: A first film containing a first metal material having a diffusion preventing function for copper, a second film containing oxygen-contained copper film, a third film containing copper and a second metal material which exhibits a diffusion preventing function for copper by bonding with oxygen, and a fourth film of copper as the main material are formed in an opening formed in an insulating film, and then a barrier layer containing the first metal material, the second metal material and oxygen is formed by thermal processing between the insulating film and the fourth film.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: February 21, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Michie Sunayama, Noriyoshi Shimizu
  • Patent number: 8114766
    Abstract: Method of manufacturing a semiconductor device, which achieves a reduction in manufacturing cost and prevents, a damage on the interconnect layer by an influence of the etchant solution, since the support substrate can be easily stripped from the interconnect layer. The method of manufacturing a semiconductor device includes: forming an interconnect film, by forming a seed metal layer on a support substrate and a protective film contacting with an end of an interface between the support substrate and the seed metal layer, and by growing a plated material from a surface of the seed metal layer; mounting a semiconductor chip on the interconnect film; removing at least a portion of the protective film to form a region where the support substrate and the seed metal layer are exposed; and stripping the support substrate from the region as a starting point to remove thereof from the seed metal layer.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Koji Soejima, Yoichiro Kurita, Masaya Kawano
  • Patent number: 8114733
    Abstract: A semiconductor device for preventing the leaning of storage nodes and a method of manufacturing the same is described. The semiconductor device includes support patterns that are formed to support a plurality of cylinder type storage nodes. The support patterns are formed of a BN layer and have a hexagonal structure. The BN layer forming the support patterns has compressive stress as opposed to tensile stress and can therefore withstand cracking in the support patterns.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 14, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hun Kim, Byung Soo Eun
  • Publication number: 20120032333
    Abstract: A first insulating film is formed on a semiconductor substrate, an interconnect groove is formed in the first insulating film, the inside of the interconnect groove is filled with a metal film, thereby forming a first interconnect. Then, a protective film is formed on the first insulating film and the first interconnect, and the surface of the protective film is exposed to reactive gas, thereby forming a reaction layer on an interface between the first interconnect and the protective film.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Takeshi Harada, Junichi Shibata, Akira Ueki
  • Patent number: 8110493
    Abstract: A method for forming a PECVD deposited amorphous carbon or ashable hard mask (AHM) in a trench or a via with less than 30% H content at a process temperature below 500° C., e.g., about 400° C. produces low H content hard masks with high selectivity and little or no hard mask on the sidewalls. The deposition method utilizes a pulsed precursor delivery with a plasma etch while the precursor flow is off.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 7, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Pramod Subramonium, Zhiyuan Fang, Jon Henri
  • Publication number: 20120028457
    Abstract: A method of patterning a metal layer is disclosed. The method includes providing a substrate and forming a material layer over the substrate. The method includes forming a second material layer over the first material layer. The method includes performing a first patterning process to the second material layer to form a trench in the second material layer. The first patterning process defines a width size of the trench, the width size being measured in a first direction. The method includes performing a second patterning process to the trench to transform the trench. The second patterning process defines a length size of the transformed trench. The length size is measured in a second direction different from the first direction. The method also includes filling the transformed trench with a conductive material.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Chen-Hao Yeh
  • Patent number: 8105935
    Abstract: A method of manufacturing a semiconductor device includes forming a first insulating film over a semiconductor substrate, forming a trench in the first insulating film, forming a metal interconnect in the trench, exposing the surface of the metal interconnect to a silicon-containing gas, performing a plasma treatment of the surface of the metal interconnect after exposing to the silicon-containing gas, and forming a second insulating film over the metal interconnect.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: January 31, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Naoki Ohara, Hirofumi Watatani, Tamotsu Owada, Kenichi Yanai
  • Patent number: 8105936
    Abstract: Solutions for forming dielectric interconnect structures are provided. Specifically, the present invention provides methods of forming a dielectric interconnect structure having a noble metal layer that is formed directly on a modified dielectric surface. In a typical embodiment, the modified dielectric surface is created by treating an exposed dielectric layer of the interconnect structure with a gaseous ion plasma. Under the present invention, the noble metal layer could be formed directly on an optional glue layer that is maintained only on vertical surfaces of any trench or via formed in the exposed dielectric layer. In addition, the noble metal layer may be provided along an interface between the via and an internal metal layer.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Louis C. Hsu, Rajiv V. Joshi
  • Patent number: 8105951
    Abstract: A method for fabricating a device pattern includes the following steps. A first pattern having a first density is formed in a pre-determined region on a substrate. The first pattern includes a base portion along a first direction and at least two protruding portions along a second direction and connected to the base portion. A spacer is formed on a sidewall of each protruding portion. The spacers do not connect with the base portion, and the spacers between two adjacent protruding portions do not connect with each other, so as to form a gap between the two adjacent protruding portions. Then, a second pattern is formed on the substrate and located in the gap, such that a third pattern having a second density is formed in the pre-determined region by the first pattern and the second pattern.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: January 31, 2012
    Assignee: Nanya Technology Corporation
    Inventor: Yu-Yao Chang
  • Patent number: 8106515
    Abstract: An embodiment of the invention provides a method of creating local metallization in a semiconductor structure, and the use of local metallization so created in semiconductor structures. In one respect, the method includes forming an insulating layer on top of a semiconductor substrate; creating a plurality of voids inside the insulating layer, with the plurality of voids spanning across a predefined area and being substantially confined within a range of depth below a top surface of the insulating layer; creating at least one via hole in the insulating layer, with the via hole passing through the predefined area; and filling the via hole, and the plurality of voids inside the insulating layer through at least the via hole, with a conductive material to form a local metallization. A semiconductor structure having the local metallization is also provided.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Jeffery B. Maxson, Aurelia A. Suwarno-Handayana, Shamas M. Ummer, Kenneth J. Giewont, Scott Richard Stiffler
  • Patent number: 8105872
    Abstract: A semiconductor device has a plurality of semiconductor die mounted to a temporary carrier. A prefabricated shielding frame has a plate and integrated bodies extending from the plate. The bodies define a plurality of cavities in the shielding frame. A penetrable material is deposited in the cavities of the shielding frame. The shielding frame is mounted over the semiconductor die such that the penetrable material encapsulates the die. The carrier is removed. An interconnect structure is formed over the die, shielding frame, and penetrable material. The bodies of the shielding frame are electrically connected through the interconnect structure to a ground point. The shielding frame is singulated through the bodies or through the plate and penetrable material to separate the die. TIM is formed over the die adjacent to the plate of the shielding frame. A heat sink is mounted over the plate of the shielding frame.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: January 31, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Publication number: 20120021600
    Abstract: A method of fabricating a film circuit substrate and a method of fabricating a chip package. The method of fabricating a film circuit substrate can include providing a base film including a chip packaging area to package a chip and a separation area to separate the two chip packaging areas from each other, the separation area including a cut area and an uncut area; forming a reserve interconnection pattern having a first height on the base film; and forming an interconnection pattern having a second height that is lower than the first height on the out area by selectively etching the reserve interconnection pattern of the cut area.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 26, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sang-Uk Han, Dae-Woo Son, Kwan-Jai Lee, Ye-Chung Chung, Jeong-Kyu Ha, Yun-Young Kim
  • Publication number: 20120018891
    Abstract: Methods of fabricating a self-aligned permanent on-chip interconnect structure are provided. In one embodiment, the method includes forming a patterned photoresist having at least one opening on a surface of a substrate. A dielectric sidewall structure is then formed on each sidewall of the patterned photoresist and within the at least one opening. A narrowed width opening is present between neighboring dielectric sidewall structures. The patterned photoresist is then removed and thereafter each dielectric sidewall structure is converted into a permanent patterned dielectric structure which is self-aligned and double patterned. At least an electrically conductive material is formed within the narrowed width openings.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Qinghuang Lin
  • Patent number: 8102048
    Abstract: There are provided the steps of forming a bump 104 on an electrode pad 103 provided on a semiconductor chip 101, forming a low-modulus insulating layer 120 on the semiconductor chip 101 and laminating, on the low-modulus insulating layer 120, a high-modulus insulating layer 121 having a higher elastic modulus than an elastic modulus of the low-modulus insulating layer 120, thereby forming a laminated insulating layer 105, exposing a part of the bump 104 from an upper surface of the laminated insulating layer 105, and forming a conductive pattern 106 connected to the bump 104.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: January 24, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Takaharu Yamano, Tadashi Arai
  • Patent number: 8101433
    Abstract: Provided is a semiconductor device having a pad on a semiconductor chip, a first passivation film formed over the semiconductor chip and having an opening portion on the pad of a probe region and a coupling region, a second passivation film formed over the pad and the first passivation film and having an opening portion on the pad of the coupling region, and a rewiring layer formed over the coupling region and the second passivation film and electrically coupled to the pad. The pad of the probe region placed on the periphery side of the semiconductor chip relative to the coupling region has a probe mark and the rewiring layer extends from the coupling region to the center side of the semiconductor chip. The present invention provides a technology capable of achieving size reduction, particularly pitch narrowing, of a semiconductor device.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiko Akiba, Bunji Yasumura, Masanao Sato, Hiromi Abe
  • Publication number: 20120015486
    Abstract: Some embodiments include methods of forming patterns. A semiconductor substrate is formed to comprise an electrically insulative material over a set of electrically conductive structures. An interconnect region is defined across the electrically conductive structures, and regions on opposing sides of the interconnect region are defined as secondary regions. A two-dimensional array of features is formed over the electrically insulative material. The two-dimensional array extends across the interconnect region and across the secondary regions. A pattern of the two-dimensional array is transferred through the electrically insulative material of the interconnect region to form contact openings that extend through the electrically insulative material and to the electrically conductive structures, and no portions of the two-dimensional array of the secondary regions is transferred into the electrically insulative material.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Inventors: Dan Millward, Kaveri Jain, Zishu Zhang, Lijing Gou, Anton de Villiers, Jianming Zhou, Yuan He, Michael Hyatt, Scott L. Light
  • Patent number: 8097490
    Abstract: A semiconductor die has a first semiconductor die mounted to a carrier. A plurality of conductive pillars is formed over the carrier around the first die. An encapsulant is deposited over the first die and conductive pillars. A first stepped interconnect layer is formed over a first surface of the encapsulant and first die. The first stepped interconnect layer has a first opening. A second stepped interconnect layer is formed over the first stepped interconnect layer. The second stepped interconnect layer has a second opening. The carrier is removed. A build-up interconnect structure is formed over a second surface of the encapsulant and first die. A second semiconductor die over the first semiconductor die and partially within the first opening. A third semiconductor die is mounted over the second die and partially within the second opening. A fourth semiconductor die is mounted over the second stepped interconnect layer.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: January 17, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Patent number: 8097534
    Abstract: On an etching target film formed on a substrate, a three-layer resist is laminated. This three-layer resist includes an organic film and a resist film developed into a resist pattern. Through the resist pattern, the organic film is etched into a mask pattern through which the etching target film will be etched. The organic film is etched with plasma which is obtained by exciting a process gas containing carbon dioxide and hydrogen to the plasma state. This scheme makes it possible to form a high perpendicularity mask pattern in the organic film.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Shuhei Ogawa, Shin Hirotsu
  • Publication number: 20120007154
    Abstract: A device includes a semiconductor substrate having a front surface and a back surface opposite the front surface. An insulation region extends from the front surface into the semiconductor substrate. An inter-layer dielectric (ILD) is over the insulation region. A landing pad extends from a top surface of the ILD into the insulation region. A through-substrate via (TSV) extends from the back surface of the semiconductor substrate to the landing pad.
    Type: Application
    Filed: July 12, 2010
    Publication date: January 12, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Yung-Chi Lin, Ku-Feng Yang
  • Patent number: 8093149
    Abstract: A semiconductor wafer and a manufacturing method for a semiconductor device are provided, which prevent peeling-off of films and pattern skipping in a wafer edge portion. A silicone substrate has formed thereon gate structures in active regions isolated by a trench isolation film; a contact interlayer film; and a multilayer interconnection structure formed by alternate laminations of low-k via interlayer films, i.e., V layers, and low-k interconnect interlayer films, i.e., M layers. In a Fine layer ranging from first to fifth interlayer films, the M layers are removed from the wafer edge portion, but the V layers are not removed therefrom. Further, the contact interlayer film is not removed from the wafer edge portion.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuo Tomita
  • Patent number: 8088685
    Abstract: The described embodiments of methods of bottom-up metal deposition to fill interconnect and replacement gate structures enable gap-filling of fine features with high aspect ratios without voids and provide metal films with good film quality. In-situ pretreatment of metal film(s) deposited by gas cluster ion beam (GCIB) allows removal of surface impurities and surface oxide to improve adhesion between an underlying layer with the deposited metal film(s). Metal films deposited by photo-induced chemical vapor deposition (PI-CVD) using high energy of low-frequency light source(s) at relatively low temperature exhibit liquid-like nature, which allows the metal films to fill fine feature from bottom up. The post deposition annealing of metal film(s) deposited by PI-CVD densifies the metal film(s) and removes residual gaseous species from the metal film(s). For advanced manufacturing, such bottom-up metal deposition methods address the challenges of gap-filling of fine features with high aspect ratios.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Simon Su-Horng Lin, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Publication number: 20110316165
    Abstract: A semiconductor device includes first, second, and third conductive lines, each with a respective line portion formed over a substrate and extending in a first direction and with a respective branch portion extending from an end of the respective line portion in a direction different from the first direction. The branch portion of a middle conductive line is disposed between and shorter than the respective branch portions of the outer conductive lines such that contact pads may be formed integral with such branch portions of the conductive lines.
    Type: Application
    Filed: October 27, 2010
    Publication date: December 29, 2011
    Inventors: JANG-HYUN YOU, JONG-MIN LEE, DONG-HWA KWAK, TAE-YONG KIM, JONG-HOON NA, YOUNG-WOO PARK, DONG-SIK LEE, JEE-HOON HAN
  • Patent number: 8084350
    Abstract: A method for manufacturing a semiconductor device includes can prevent defects of a semiconductor device due to the deterioration of electro migration (EM)/stress migration (SM) properties of the device as a result of metal corrosion and void generation in burying a novolac material. Embodiments can also prevent the generation of fencing in a metal wire structure.
    Type: Grant
    Filed: November 29, 2008
    Date of Patent: December 27, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Eun-Jong Shin
  • Patent number: 8084351
    Abstract: A method for fabricating a contact of a semiconductor device includes the steps of forming a dielectric layer having a contact hole on a semiconductor substrate, forming an out-gassing barrier layer comprising a poly-silicon layer to cover at least inner walls of the contact hole in order to prevent undesired out-gassing from the dielectric layer, and depositing an aluminum layer on the out-gassing barrier layer. The contact structure of the semiconductor device includes the aluminum layer filled in the contact layer formed on the semiconductor substrate, and the out-gassing barrier layer formed under the aluminum layer to prevent out-gassing from the dielectric layer. A fine contact can be formed along with the aluminum layer, thereby realizing the contact structure of a lower contact resistance. As a result, it is possible to realize stabilization of an overall contact resistance of the semiconductor device.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: December 27, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: In Cheol Ryu
  • Publication number: 20110312177
    Abstract: The present invention provides a method of fabricating an interconnect structure in which a patternable low-k material replaces the need for utilizing a separate photoresist and a dielectric material. Specifically, this invention relates to a simplified method of fabricating single-damascene and dual-damascene low-k interconnect structures with at least one patternable low-k dielectric and at least one inorganic antireflective coating. In general terms, a method is provided that includes providing at least one patternable low-k material on a surface of an inorganic antireflective coating that is located atop a substrate, said inorganic antireflective coating is vapor deposited and comprises atoms of M, C and H wherein M is at least one of Si, Ge, B, Sn, Fe, Ta, Ti, Ni, Hf and La; forming at least one interconnect pattern within the at least one patternable low-k material; and curing the at least one patternable low-k material.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Qinghuang Lin, Deborah A. Neumayer