Responsive To Electromagnetic Radiation Patents (Class 438/57)
  • Patent number: 8981388
    Abstract: Provided are a solar cell and a method of manufacturing the same. The method includes: preparing a bottom substrate including sequentially stacked first and second portions, each of the first and second portions including a plurality of grains, wherein the maximum grain size of the second portion is less than the minimum grains size of the first portion; exposing the first portion of the bottom substrate by removing the second portion of the bottom substrate; and forming a photovoltaic conversion layer on the first portion of the bottom substrate.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 17, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Hogyeong Yun
  • Publication number: 20150072460
    Abstract: The invention relates to a device for depositing a layer made of at least two components on an object, with a deposition chamber for disposing the object, at least one source with material to be deposited, as well as at least one device for controlling the deposition process, implemented such that the concentration of at least one component of the material to be deposited can be modified in its gas phase prior to deposition on the substrate by selective binding of a specified quantity of the at least one component, wherein the selectively bound quantity of the at least one component can be controlled by modifying at least one control parameter that is actively coupled to a binding rate or the component. It further relates to a device for depositing a layer made of at least two components on an object, wherein a device for controlling the deposition process has at least one gettering element made of a reactive material, wherein the reactive material includes copper and/or molybdenum.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 12, 2015
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Joerg PALM, Stephan POHLNER, Stefan JOST, Thomas HAPP
  • Patent number: 8975717
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. A trench structure separates the P-type doped region from the N-type doped region. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. The trench structure may include a textured surface for increased solar radiation collection. Among other advantages, the resulting structure increases efficiency by providing isolation between adjacent P-type and N-type doped regions, thereby preventing recombination in a space charge region where the doped regions would have touched.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 10, 2015
    Assignee: SunPower Corporation
    Inventor: David D. Smith
  • Patent number: 8975511
    Abstract: A photovoltaic device includes a substrate, a first electrode, a second electrode, and an active layer between the first electrode and the second electrode. The active layer comprises a polyarylamine biscarbonate ester of Formula (I): wherein Ar1, Ar2, Ar3, Ar4, R, m, y, and n are as described herein. The photovoltaic device can be fabricated in an ambient environment and does not need significant processing.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: March 10, 2015
    Assignee: Xerox Corporation
    Inventors: Liang-Bih Lin, George Cunha Cardoso, Amanda Elizabeth Preske, Krishna Balantrapu
  • Patent number: 8969123
    Abstract: In an apparatus for manufacturing a dye-sensitized solar cell, a photosensitization dye solution makes contact with an electrode material layer that functions as a working electrode of a dye-sensitized solar cell so that the photosensitizing dye is adsorbed on the layer. Such an apparatus for manufacturing a dye-sensitized solar cell has a substrate housing section to house a substrate with the electrode material layer formed on its surface, and a circulation mechanism to circulate the photosensitization dye solution in such a way that the solution passes a surface of the substrate housed in the substrate housing section. In such an apparatus, a cross-sectional area of a flow path for the photosensitization dye solution in a portion facing the substrate in the substrate housing section is set smaller than a cross-sectional area of a flow path for the photosensitization dye solution in other portions.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 3, 2015
    Assignees: Tokyo Electron Limited, Kyushu Institute of Technolgy
    Inventors: Hiroaki Hayashi, Ryuichi Shiratsuchi, Suehiro Ohkubo, Shuzi Hayase, Taiichi Mure, Yasuhiro Shishida
  • Patent number: 8969134
    Abstract: A tape capable of laser ablation may be used in the formation of microelectronic interconnects, wherein the tape may be attached to bond pads on a microelectronic device and vias may be formed by laser ablation through the tape to expose at least a portion of corresponding bond pads. The microelectronic interconnects may be formed on the bond pads within the vias, such as by solder paste printing and solder reflow. The laser ablation tape can be removed after the formation of the microelectronic interconnects.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: March 3, 2015
    Assignee: Intel Corporation
    Inventors: Xavier F. Brun, Takashi Kumamoto, Sufi Ahmed
  • Patent number: 8969119
    Abstract: Processes for suppressing minority carrier lifetime degradation in silicon wafers are disclosed. The processes involve quench cooling the wafers to increase the density of nano-precipitates in the silicon wafers and the rate at which interstitial atoms are consumed by the nano-precipitates.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: March 3, 2015
    Assignee: MEMC Singapore Pte. Ltd. (UEN200614794D)
    Inventors: Robert J. Falster, Vladimir V. Voronkov
  • Patent number: 8969997
    Abstract: A method of forming of a semiconductor structure has isolation structures. A substrate having a first region and a second region is provided. The first region and the second region are implanted with neutral dopants to form a first etching stop feature and a second stop feature in the first region and the second region, respectively. The first etching stop feature has a depth D1 and the second etching stop feature has a depth D2. D1 is less than D2. The substrate in the first region and the second region are etched to form a first trench and a second trench respectively. The first trench and the second trench land on the first etching stop feature and the second etching stop feature, respectively.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chang-Sheng Tsao
  • Publication number: 20150053923
    Abstract: A back side illumination photodiode includes a light-receiving back side surface of a semiconductor material substrate. An area of the light-receiving back side surface includes a recess. The recess is filled with a material having an optical index that is lower than an optical index of the semiconductor material substrate. Both the substrate and the filling material are transparent to an operating wavelength of the photodiode. The recess may be formed to have a ring shape.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Applicants: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS SA
    Inventors: Laurent Frey, Michel Marty
  • Publication number: 20150056734
    Abstract: A Method for making a separation between an active zone of a substrate located on its front face from a given portion of the substrate located on its back face, wherein trenches and cavities wider than the trenches are formed to extend said trenches, such that at least one given cavity formed to extend a given trench is adjacent to another cavity, and when the cavities have been filled with a given material, they form a separation zone between said active zone and a given portion of the substrate that will be removed later.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 26, 2015
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Laurent Grenouillet, Maud Vinet
  • Patent number: 8963273
    Abstract: A method for forming a back-side illuminated image sensor, including the steps of: a) forming, from the front surface, doped polysilicon regions, of a conductivity type opposite to that of the substrate, extending in depth orthogonally to the front surface and emerging into the first layer; b) thinning the substrate from its rear surface to reach the polysilicon regions, while keeping a strip of the first layer; c) depositing, on the rear surface of the thinned substrate, a doped amorphous silicon layer, of a conductivity type opposite to that of the substrate; and d) annealing at a temperature capable of transforming the amorphous silicon layer into a crystallized layer.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: February 24, 2015
    Assignees: STMicroelectronics S.A., STMicroelectronics (Crolles 2) SAS
    Inventors: Michel Marty, François Roy, Jens Prima
  • Patent number: 8962374
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Satyavolu S. Papa Rao, Kathryn C. Fisher, Harold J. Hovel, Qiang Huang, Susan Huang, Young-Hee Kim
  • Patent number: 8962369
    Abstract: A method for introducing species into a strained semiconductor layer comprising: providing a substrate comprising a first region comprising an exposed strained semiconductor layer, loading the substrate in a reaction chamber, then forming a conformal first species containing-layer by vapor phase deposition (VPD) at least on the exposed strained semiconductor layer, and thereafter performing a thermal treatment, thereby diffusing at least part of the first species from the first species-containing layer into the strained semiconductor layer and activating at least part of the diffused first species in the strained semiconductor layer.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: February 24, 2015
    Assignee: IMEC
    Inventors: Roger Loo, Frederik Leys, Matty Caymax
  • Publication number: 20150048466
    Abstract: The present invention provides an image sensor and a fabricating method of the image sensor. The image sensor comprises: a first type epitaxial layer, a photodiode region, a first type well region, a gate region of a source follower transistor, and a first type implant isolation region. The first type well region is formed within the first type epitaxial layer with a first horizontal distance to the photodiode region and a vertical distance to a surface of the first type epitaxial layer. The gate region of a source follower transistor is formed on the surface of the first type epitaxial layer and above the first type well region, and has a second horizontal distance to the photodiode region. There is a distance between the first type implant isolation region and the first type well region as an anti-blooming path.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 19, 2015
    Applicant: Himax Imaging, Inc.
    Inventors: Yang Wu, Feixia Yu, Inna Patrick, Yu Hin Desmond Cheung
  • Publication number: 20150047696
    Abstract: Disclosed is a solar cell including a support substrate, a barrier layer on the support substrate, and a photo-electro conversion part on the barrier layer.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Inventor: Do Won BAE
  • Patent number: 8957491
    Abstract: An optical sensor, according to an embodiment of the present invention, includes a photodetector region and a plurality of slats over the photodetector region. In an embodiment, the slats are made up of a plurality of metal layers connected in a stacked configuration with a plurality of metal columns. The metal columns can be made of metal vias, metal contacts and/or metal plugs. In an embodiment, the slats are angled relative to a surface of the photodetector region, wherein the angling of the slats is achieved by the metal layers being laterally offset relative to one another and/or metal columns being laterally offset relative to one another. In an alternative embodiment, the slats are made of an opaque polymer material, such as an opaque photoresist.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 17, 2015
    Assignee: Intersil Americas LLC
    Inventor: Francois Hebert
  • Publication number: 20150040979
    Abstract: High efficiency silicon solar cells, including IBC cells, may be formed from lightly doped p-n sandwich structures fabricated in-situ by epitaxial growth. For example, the solar cell may comprise: an n-type silicon layer greater than or equal to 20 microns thick, with a dopant concentration between 1E15/cm3 and 5E16/cm3 and a bulk silicon carrier lifetime greater than 50 microseconds; a p-type silicon layer greater than 10 microns thick, with a dopant concentration between 1E16/cm3 and 5E18/cm3, and a bulk silicon carrier lifetime greater than 10 microseconds; wherein the n-type and p-type silicon layers were fabricated by epitaxial deposition, one after the other, on a reusable single crystal silicon substrate. The ideality factor of the silicon solar cell may be approximately 1.0. The epitaxial deposition may be in a reactor with low auto-doping and low oxygen incorporation.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 12, 2015
    Inventors: Tirunelveli S. Ravi, Ruiying Hao
  • Publication number: 20150044812
    Abstract: A method for solar cell fabrication is provided. The method includes etching a doped surface of a silicon wafer solar cell using a solution including potassium hydroxide (KOH) and sodium hypochlorite (NaOCl). Alternatively the solution could include sodium hydroxide (NaOH) and NaOCl. In one aspect, the step of back-etching an emitter of the solar cell using the KOH:NaOCl solution is simultaneously performed with porous silicon removal. In another aspect, the step of back-etching the emitter of the solar cell using the KOH:NaOCl solution also includes PSG removal. And in yet another aspect, the step of back-etching the emitter of the solar cell using the KOH:NaOCl solution is performed simultaneously with polishing.
    Type: Application
    Filed: May 9, 2013
    Publication date: February 12, 2015
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Prabir Kanti Basu, Matthew Benjamin Boreland, Debajyoti Sarangi, Vinodh Shanmugam
  • Publication number: 20150044809
    Abstract: A method for depositing particles on a substrate, or a running substrate, including: (a) producing at least one first compact film of particles floating on a carrier liquid provided in a transfer area having an outlet of particles arranged facing the substrate; (b) producing at least one pattern by depositing a substance on the first film in the transfer area, along a contour of the pattern, the substance maintaining the particles of the film together in contact with the substance; (c) removing at least one portion of the particles of the first film located interiorly relatively to the contour, or exteriorly relatively to the contour; and then (d) transferring patterns onto the substrate through the outlet of particles.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 12, 2015
    Applicant: Commissariat a l'energie atomique et aux ene alt
    Inventors: Olivier Dellea, Philippe Coronel, Simon Frederic Desage, Pascal Fugier
  • Patent number: 8952493
    Abstract: According to one embodiment of the present invention, a solid state electrolyte memory cell includes a cathode, an anode and a solid state electrolyte. The anode includes an intercalating material and first metal species dispersed in the intercalating material.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 10, 2015
    Assignees: Adesto Technologies Corporation, Artemis Acquisition LLC
    Inventor: Sandra Mege
  • Patent number: 8952474
    Abstract: Provided is a method of fabricating a backside illuminated image sensor that includes providing a device substrate having a frontside and a backside, where pixels are formed at the frontside and an interconnect structure is formed over pixels, forming a re-distribution layer (RDL) over the interconnect structure, bonding a first glass substrate to the RDL, thinning and processing the device substrate from the backside, bonding a second glass substrate to the backside, removing the first glass substrate, and reusing the first glass substrate for fabricating another backside-illuminated image sensor.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Chieh Huang, Dun-Nian Yaung, Chih-Jen Wu, Chen-Ming Huang
  • Patent number: 8951824
    Abstract: Provided are novel methods of fabricating photovoltaic modules using pressure sensitive adhesives (PSA) to secure wire networks of interconnect assemblies to one or both surfaces of photovoltaic cells. A PSA having suitable characteristics is provided near the interface between the wire network and the cell's surface. It may be provided together as part of the interconnect assembly or as a separate component. The interconnect assembly may also include a liner, which may remain as a part of the module or may be removed later. The PSA may be distributed in a void-free manner by applying some heat and/or pressure. The PSA may then be cured by, for example, exposing it to UV radiation to increase its mechanical stability at high temperatures, in particular at a, for example the maximum, operating temperature of the photovoltaic module. For example, the modulus of the PSA may be substantially increased during this curing operation.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: February 10, 2015
    Assignee: Apollo Precision (Fujian) Limited
    Inventor: Todd Krajewski
  • Publication number: 20150037922
    Abstract: A method for imparting a pattern to a flowable resist material on a substrate entails providing a resist layer so thin that during a stamp wedging process, the resist never completely fills the space between the substrate and the bottom surface of a stamp between wedge protrusions, leaving gap everywhere therebetween. A gap remains between the resist and the extended surface of the stamp. If the resist layer as deposited is somewhat thicker than the targeted amount, it will simply result in a smaller gap between resist and tool. The presence of a continuous gap assures that no pressure builds under the stamp. Thus, the force on the protrusions i determined only by the pressure above the stamp and is well controlled, resulting in well-controlled hole sizes. The gap prevents resist from being pumped entirely out of any one region, and thus prevents any regions from being uncovered of resist. The stamp can be pulsed in its contact with the substrate, repeatedly deforming the indenting protrusions.
    Type: Application
    Filed: September 22, 2012
    Publication date: February 5, 2015
    Applicant: 1366 TECHNOLOGIES, INC.
    Inventor: Emanuel M. Sachs
  • Publication number: 20150034834
    Abstract: Radiation detectors having nanowires with charged, radiation-labile coatings configured to change the electrical properties of nanowires are provided. In one aspect, a radiation detection device is provided. The radiation detector device includes at least one nanowire having a radiation-labile coating with charged moieties on a surface thereof, wherein the radiation-labile coating is configured to degrade upon exposure to radiation such that the charged moieties are cleaved from the radiation-labile coating upon exposure to radiation and thereby affect a transconductance of the nanowire.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Jose M. Lobez Comeras
  • Patent number: 8946540
    Abstract: An imitation solar module for structural and aesthetic use in an array of electricity generating solar modules. The imitation solar module having a non-standard shape and a visual representation such as a decal of an actual solar module surface thereon. The imitation solar module includes triangular shapes for use in staggered module arrays.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: February 3, 2015
    Assignee: Zep Solar, LLC
    Inventors: John R. West, Alex Haines, Kyle Tripp
  • Patent number: 8945977
    Abstract: A method for producing an opto-microelectronic micro-imaging device includes a step of forming a first functional part on the base of a first substrate, a base layer, and first electric connection pad. The first functional part is transferred onto a second substrate. The first substrate is thinned until the base layer is reached. A second functional part is formed on the base layer. One via is connected to the first electric connection pad and through the first functional part. The step of forming the second functional part includes connecting the via with the second electric connection pad.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Umberto Rossini, Thierry Flahaut
  • Patent number: 8945430
    Abstract: A photovoltaic cell comprises a membrane electrode assembly obtainable by the in situ polymerization between two electrodes of one or more monomers to form a polymer, and then infusing an activating agent into the polymer, wherein the activating agent enables the membrane electrode assembly to function as a photovoltaic cell.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 3, 2015
    Assignee: ITM Power (Research) Ltd.
    Inventors: Donald James Highgate, Nicholas Baynes, Rachel Louise Smith, Kris Hyde
  • Publication number: 20150027531
    Abstract: A silicon-containing film includes a first chemical vapor deposition layer and a second chemical vapor deposition layer. The first chemical vapor deposition layer includes elemental silicon. The first chemical vapor deposition layer is formed by a plasma CVD method such that oxygen concentration is greater than or equal to 0% by element and less than 10% by element. The second chemical vapor deposition layer includes elemental silicon. The second chemical vapor deposition layer is formed by the plasma CVD method such that oxygen concentration is greater than 35% by element and less than or equal to 70% by element. A ratio of the thickness of the second chemical vapor deposition layer relative to the thickness of the first chemical vapor deposition layer is 1.5-9.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 29, 2015
    Applicant: Toray Engineering Co., Ltd.
    Inventors: Masamichi Yamashita, Takayoshi Fujimoto, Takashi Iwade
  • Patent number: 8940556
    Abstract: A apparatus and method for manufacturing a photovoltaic module includes components for heating the module and applying an electrical bias to the module to improve photovoltaic module performance and manufacture multiple photovoltaic modules with similar performance.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 27, 2015
    Assignee: First Solar, Inc
    Inventors: Imran Khan, Markus Gloeckler, Jigish Trivedi, Thomas Truman
  • Publication number: 20150024538
    Abstract: An apparatus includes a manifold coupled to a vapor source, the manifold having a plurality of nozzles, an inner cylinder, and an outer cylinder containing the inner cylinder with a space defined between the inner and outer cylinders. One of the inner cylinder or outer cylinder is rotatable with respect to the other of the inner cylinder or outer cylinder. The outer cylinder has an inlet coupled to the manifold to receive vapor from the nozzles. The outer cylinder has an outlet for dispensing the vapor.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: TSMC Solar Ltd.
    Inventor: Shih-Wei Chen
  • Publication number: 20150020863
    Abstract: Use of chemical mechanical polishing (CMP) and/or pure mechanical polishing to separate sub-cells in a thin film solar cell. In one embodiment the CMP is only used to separate the active, thin film layer into sub-cells, with scribing still being used to achieve sub-cell separation in conductive layers above and below the active, thin film layer. Also, the active layer may be placed over a series of protrusions so that the CMP removes the active layer that is over the protrusion, while leaving intact the flat, planar portions of the active layer. In this way, the removed active layer, from over the protrusions then becomes the division between sub-cells in the active layer.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Markus Schmidt
  • Publication number: 20150020877
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 22, 2015
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Virendra V. Rana, Sean Seutter, Anand Deshpande, Anthony Calcaterra, Gerry Olsen, Kamran Manteghi, Thom Stalcup, George D. Kamian, David Xuan-Qi Wang, Yen-Sheng Su, Michael Wingert
  • Patent number: 8935848
    Abstract: The present invention is a method for providing an integrated circuit assembly, the integrated circuit assembly including an integrated circuit and a substrate. The method includes mounting the integrated circuit to the substrate. The method further includes, during assembly of the integrated circuit assembly, applying a low processing temperature, at least near-hermetic, glass-based coating directly to the integrated circuit and a localized interconnect interface, the interface being configured for connecting the integrated circuit to at least one of the substrate and a second integrated circuit of the assembly. The method further includes curing the coating. Further, the integrated circuit may be a device which is available for at least one of sale, lease and license to a general public, such as a Commercial off the Shelf (COTS) device. Still further, the coating may promote corrosion resistance and reliability of the integrated circuit assembly.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: January 20, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: Alan P. Boone, Nathan P. Lower, Ross K. Wilcoxon
  • Patent number: 8936949
    Abstract: A manufacturing method of a solar cell in which a light receiving side electrode including grid electrodes is provided on one side of a semiconductor substrate, comprises: a first step of forming an impurity diffusion layer on one side of the semiconductor substrate of a first conductivity type, the diffusion layer having a second conductivity-type impurity diffused therein; a second step of measuring a sheet resistance value of the diffusion layer at a plurality of measurement points in a surface of the diffusion layer; and a third step of dividing the surface of the diffusion layer into a plurality of areas corresponding to the measured sheet resistance values of the surface of the diffusion layer, setting a distance between adjacent grid electrodes for each of the areas, and forming the light receiving side electrode, which is electrically connected to the diffusion layer, on the diffusion layer.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: January 20, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Shoichi Karakida
  • Publication number: 20150017754
    Abstract: The invention provides composition for forming an n-type diffusion layer, the composition comprising a compound containing a donor element, a dispersing medium, and an organic filler; a method for producing a semiconductor substrate having an n-type diffusion layer; and a method for producing a photovoltaic cell element.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 15, 2015
    Inventors: Tetsuya Sato, Masato Yoshida, Takeshi Nojiri, Toranosuke Ashizawa, Yasushi Kurata, Yoichi Machii, Mitsunori Iwamuro, Akihiro Orita, Mari Shimizu
  • Patent number: 8932894
    Abstract: Gray tone lithography is used to form curved silicon topographies for semiconductor based solid-state imaging devices. The imagers are curved to a specific curvature and shaped directly for the specific application; such as curved focal planes. The curvature of the backside is independent from the front surface, which allows thinning of the detector using standard semiconductor processing.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 13, 2015
    Assignee: The United States of America, as represented by the Secratary of the Navy
    Inventors: Marc Christophersen, Bernard F. Phlips
  • Publication number: 20150010263
    Abstract: Forming an optical device includes growing an electro-absorption medium in a variety of different regions on a base of a device precursor. The regions include a component region and the regions are selected so as to achieve a particular chemical composition for the electro-absorption medium included in the component region. An optical component is formed on the device precursor such that the optical component includes at least a portion of the electro-absorption medium from the component region. Light signals are guided through the electro-absorption medium from the component region during operation of the component.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Inventors: Joan Fong, Wei Qian, Dazeng Feng, Mehdi Asghari
  • Publication number: 20150011036
    Abstract: The invention relates to a method for manufacturing a solar cell from a semiconductor substrate of a first conductivity type, the semiconductor substrate having a front side and a back side, the method comprising in this sequence: creating by diffusion of a dopant of a second conductivity type a second conductivity-type doped layer in the front side and the back side, during diffusion forming of a dopant containing glassy layer on the front and back side; removing the second conductivity-type doped layer and the dopant containing glassy layer from the back side by a single sided etching process, while maintaining the dopant-containing glassy layer in the front side; creating a Back Surface Field (BSF) layer of the first conductivity type on the back side by implantation of a dopant of the first conductivity type into the back side; removing the dopant containing glassy layer from the front side of said substrate by an etching process; surface oxidation by heating said substrate for a predetermined period of t
    Type: Application
    Filed: March 18, 2013
    Publication date: January 8, 2015
    Inventor: Ronald Cornelis Gerard Naber
  • Publication number: 20150008551
    Abstract: A semi-conducting structure, configured to receive an electromagnetic radiation and to transform the electromagnetic radiation into an electric signal, including: a first zone and a second zone of a same conductivity type and of same elements; a barrier zone, provided between the first and second zones, for acting as a barrier to majority carriers of the first and second zones on a barrier thickness, the barrier zone having its lowest bandgap energy defining a barrier proportion; and a first interface zone configured to interface the first zone and the barrier zone on a first interface thickness, the first interface zone including a composition of elements which is varied from a proportion corresponding to that of the first material to the barrier proportion, the first interface thickness being at least equal to half the barrier thickness.
    Type: Application
    Filed: January 2, 2013
    Publication date: January 8, 2015
    Applicant: Commissariat a l'energie atomique et aux ene alt
    Inventors: Olivier Gravrand, Alexandre Ferron
  • Patent number: 8927316
    Abstract: A camera module includes an image sensor chip including a substrate having first and second opposite surfaces and a ground pad on the first surface, a housing surrounding the sides of the image sensor chip but which leaves the second surface of the image sensor chip exposed, an electromagnetic wave-shielding film united with the housing, and an electrical conductor electrically connected to the ground pad. The camera module also has an optical unit disposed on the first surface of the image sensor chip in the housing to guide light from an object to the image sensor chip. The electrical conductor extends through a side of the housing. The conductor also contacts the electromagnetic wave-shielding film to electrically connect the ground pad and the electromagnetic wave-shielding film.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoe Cho, Byoung-Rim Seo, Yung-Cheol Kong, Han-Sung Ryu
  • Patent number: 8927313
    Abstract: In a method for manufacturing a solar cell where the solar cell includes a dopant layer having a first portion of a first resistance and a second portion of a second resistance lower than the first resistance, the method includes ion-implanting a dopant into the semiconductor substrate to form the dopant layer; firstly activating by heating the second portion and activating the dopant at the second portion; and secondly activating by heating the first portion and the second portion and activating the dopant at the first portion and the second portion.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 6, 2015
    Assignee: LG Electronics Inc.
    Inventors: Kyoungsoo Lee, Seongeun Lee
  • Patent number: 8927315
    Abstract: Methods and devices are provided for high-efficiency solar cells. In one embodiment, an assembly is provided comprising of a plurality of solar cells each having at least one transparent conductor, a photovoltaic layer, at least one bottom electrode, a plurality of emitter wrap through (EWT) vias containing a conductive material, and a plurality of series interconnect vias containing a conductive material. The assembly may also include a backside support coupled to the solar cells, wherein the backside support is patterned to have electrically conductive areas and electrically nonconductive areas that create a series interconnect between solar cells electrically coupled by the support and prevents parallel connections between the solar cells. The cells may have a via insulating layer in each via separating the conductive material in each via from any side walls of the bottom electrode.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: January 6, 2015
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: James R. Sheats, Werner Dumanski
  • Patent number: 8927324
    Abstract: A method for the production of a wafer-based, back-contacted heterojunction solar cell includes providing at least one absorber wafer. Metallic contacts are deposited as at least one of point contacts and strip contacts in a predetermined distribution on a back side of the at least one absorber wafer. The contacts have steep flanks that are higher than a cumulative layer thickness of an emitter layer and an emitter contact layer and are sheathed with an insulating sheath. The emitter layer is deposited over an entire surface of the back side of the at least one absorber wafer. The emitter contact layer is deposited over an entire surface of the emitter layer so as to form an emitter contact system. At least one of the emitter layer and the emitter contact layer is selectively removed so as to expose the steep flanks of the contacts that are covered with the insulating sheath.
    Type: Grant
    Filed: October 10, 2009
    Date of Patent: January 6, 2015
    Assignee: Helmholtz-Zentrum Berlin Fuer Materialien und Energie GmbH
    Inventor: Rolf Stangl
  • Patent number: 8927319
    Abstract: There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Kyusang Lee, Kuen-Ting Shiu
  • Patent number: 8927314
    Abstract: A method of manufacturing a solar cell includes the steps of: providing a substrate having a front side, a back side and a doped region; forming a conductor layer on the front side; firing the conductor layer at a temperature such that the conductor layer is formed with a first portion embedded into the doped region and a second portion other than the first portion; forming an anti-reflection coating (ARC) layer on the front side and the second portion, wherein the ARC layer covers the conductor layer so that the second portion of the conductor layer is disposed in the ARC layer; and removing the ARC layer on the conductor layer so that the conductor layer has an exposed surface exposed out of the ARC layer, wherein the exposed surface of the conductor layer is substantially flush with a first exposed surface of the ARC layer.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: January 6, 2015
    Assignee: Big Sun Energy Technology Inc.
    Inventors: Sheng Yung Liu, Chin-Tien Yang, Chun-Hung Lin
  • Publication number: 20150004734
    Abstract: A method for fabricating a solar cell using a nozzle assembly that includes a base portion, a scriber coupled to the base portion, and a nozzle coupled to the base portion such that the nozzle is positioned a predefined distance from a tip of the scriber is provided. The method generally comprises positioning a substructure that includes a buffer layer and an absorber layer proximate to the base portion. A P2 line is scribed through the buffer and absorber layers of the substructure using the scriber tip. A nanoparticle solution is sprayed, using the nozzle, onto at least one portion of the buffer layer at a predefined pressure when the P2 line is being scribed through the buffer and absorber layers such that a transparent conductive oxide (TCO) layer is inhibited from forming over the portion of the buffer layer that is being sprayed with the nanoparticle solution.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Shih-Wei CHEN
  • Patent number: 8921187
    Abstract: Embodiments of a process including depositing a sacrificial layer on the surface of a substrate over a photosensitive region, over the top surface of a transfer gate, and over at least the sidewall of the transfer gate closest to the photosensitive region, the sacrificial layer having a selected thickness. A layer of photoresist is deposited over the sacrificial layer, which is patterned and etched to expose the surface of the substrate over the photosensitive region and at least part of the transfer gate top surface, leaving a sacrificial spacer on the sidewall of the transfer gate closest to the photosensitive region. The substrate is plasma doped to form a pinning layer between the photosensitive region and the surface of the substrate. The spacing between the pinning layer and the sidewall of the transfer gate substantially corresponds to a thickness of the sacrificial spacer. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 30, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Patent number: 8921149
    Abstract: A first species selectively dopes a workpiece to form a first doped region. In one embodiment, a selective implant is performed using a mask with apertures. A soft mask is applied to the first doped region. A second species is implanted into the workpiece to form a second implanted region. The soft mask blocks a portion of the second species. Then the soft mask is removed. The first species and second species may be opposite conductivities such that one is p-type and the other is n-type.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 30, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Nicholas P. T. Bateman, William T. Weaver
  • Patent number: 8916873
    Abstract: A photodetector includes a semiconductor substrate having an irradiation zone configured to generate charge carriers having opposite charge carrier types in response to an irradiation of the semiconductor substrate. The photodetector further includes an inversion zone generator configured to operate in at least two operating states to generate different inversion zones within the substrate, wherein a first inversion zone generated in a first operating state differs from a second inversion zone generated in a second operating state, and wherein the first inversion zone and the second inversion zone have different extensions in the semiconductor substrate. A corresponding method for manufacturing a photodetector and a method for determining a spectral characteristic of an irradiation are also described.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: December 23, 2014
    Assignee: Infineon Technologies AG
    Inventor: Thoralf Kautzsch
  • Publication number: 20140370640
    Abstract: A high-fidelity dopant paste is disclosed. The high-fidelity dopant paste includes a solvent, a set of non-glass matrix particles dispersed into the solvent, and a dopant.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Applicant: Innovalight, Inc.
    Inventors: Elena Rogojina, Maxim Kelman, Giuseppe Scardera