Dynamic Random Access Memory Structures (dram) (epo) Patents (Class 257/E21.646)

  • Patent number: 8309448
    Abstract: Provided is a method for forming a buried word line in a semiconductor device. The method includes forming a trench by etching a pad layer and a substrate, forming a conductive layer to fill the trench, planarizing the conductive layer until the pad layer is exposed, performing an etch-back process on the planarized conductive layer, and performing an annealing process in an atmosphere of a nitride-based gas after at least one of the forming of the conductive layer, the planarizing of the conductive layer, and the performing of the etch-back process on the planarized conductive layer.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Sun-Hwan Hwang, Se-Aug Jang, Kee-Joon Oh, Soon-Young Park
  • Publication number: 20120280297
    Abstract: A DRAM with dopant stop layer includes a substrate, a trench-type transistor and a capacitor electrically connected to the trench-type transistor. The trench-type transistor includes a gate structure embedded in the substrate. A source doping region and a drain doping region are disposed in the substrate at two sides of the gate structure. A boron doping region is disposed under the source doping region. A dopant stop layer is disposed within the boron doping region or below the boron doping region. The dopant stop layer includes a dopant selected from the group consisting of C, Si, Ge, Sn, Cl, F and Br.
    Type: Application
    Filed: September 14, 2011
    Publication date: November 8, 2012
    Inventors: Chia-Ming Yang, Yao-Hsien Wang, Chen-Kang Wei, Chien-Chi Lee, Ming Yean, Yi-Wei Chuang, Hsiao-Lung Chiang, Hung-Chang Liao, Chung-Yuan Lee, Ming-Chi Chao
  • Publication number: 20120273862
    Abstract: Apparatus and methods are disclosed, including an apparatus that includes a number of tiers of a first semiconductor material, each tier including at least one access line of at least one memory cell and at least one source, channel and/or drain of at least one peripheral transistor, such as one used in an access line decoder circuit or a data line multiplexing circuit. The apparatus can also include a number of pillars of a second semiconductor material extending through the tiers of the first semiconductor material, each pillar including either a source, channel and/or drain of at least one of the memory cells, or a gate of at least one of the peripheral transistors. Methods of forming such apparatus are also described, along with other embodiments.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Toru Tanzawa
  • Patent number: 8298907
    Abstract: A method for forming a memory device in a semiconductor on insulator substrate is provided, in which a protective oxide that is present on the sidewalls of the trench protects the first semiconductor layer, i.e., SOI layer, of the semiconductor on insulator substrate during bottle etching of the trench. In one embodiment, the protective oxide reduces back channel effects of the transistors to the memory devices in the trench that are formed in the semiconductor on insulator substrate. In another embodiment, a thermal oxidation process increases the thickness of the buried dielectric layer of a bonded semiconductor on insulator substrate by oxidizing the bonded interface between the buried dielectric layer and at least one semiconductor layers of the semiconductor on insulator substrate. The increased thickness of the buried dielectric layer may reduce back channel effects in devices formed on the substrate having trench memory structures.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Naoyoshi Kusaba, Karen A. Nummy, Carl J. Radens, Ravi M. Todi, Geng Wang
  • Publication number: 20120261733
    Abstract: A semiconductor device comprises a trench isolation. The trench isolation is formed in a surface of a semiconductor substrate to define an active region a well region, and a bottom of the trench isolation is positioned within the well region. The trench isolation includes a conductive wiring electrically connected to the well region and an insulating film which buries the conductive wiring in the bottom of the trench isolation. Semiconductor elements are disposed in the active region.
    Type: Application
    Filed: March 12, 2012
    Publication date: October 18, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kiyonori OYU
  • Patent number: 8288261
    Abstract: In a further embodiment of the present invention, a method for preparing a contact structure includes the steps of forming a conductive stack on the semiconductor substrate; forming a patterned mask on the conductive stack; forming a depression in an upper portion of the conductive stack; forming a spacer layer on the surface of the depression and the patterned mask; forming a mask block filling the depression; removing a portion of the spacer layer not covered by the mask block; and removing a portion of the conductive stack by using the mask block and the patterned mask to form the contact structure including at least one tall contact plug under the patterned mask and at least one the short contact plug under the mask block.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: October 16, 2012
    Assignee: Nanya Technology Corporation
    Inventor: Chang Ming Wu
  • Patent number: 8283750
    Abstract: The invention relates to an electric device including an electric element, the electric element comprising a first electrode (104) having a first surface (106) and a pillar (108), the pillar extending from the first surface in a first direction (110), the pillar having a length measured from the first surface parallel to the first direction, the pillar having a cross section (116) perpendicular to the first direction and the pillar having a sidewall surface (120) enclosing the pillar and extending in the first direction, characterized in—that, the pillar comprises any one of a score (124) and protrusion (122) extending along at least part of the length of the pillar for giving the pillar (108) improved mechanical stability. The electrode allows electrical elements such as capacitors, energy storage devices or diodes to be made with improved properties in a cost effective way.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: October 9, 2012
    Assignee: IPDIA
    Inventors: Lionel Guiraud, Francois Lecornec, Johan H. Klootwijk, Freddy Roozeboom, David D. R. Chevrie
  • Patent number: 8278206
    Abstract: A method of forming a memory device includes forming a first interlayer insulating layer on a semiconductor substrate, forming a first electrode in the first interlayer insulating layer, the first electrode having a top surface of a rectangular shape extending in a first direction, and forming a variable resistance pattern on the first electrode, the variable resistance pattern having a bottom surface of a rectangular shape extending in a second direction crossing the first direction, the bottom surface of the variable resistance pattern contacting the first electrode, wherein the area of contact between the lower electrode and the variable resistance pattern is substantially equal to a multiplication of a minor axis length of a top surface of the first electrode and a minor axis length of a bottom surface of the variable resistance pattern.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 2, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyuhwan Oh, Dong-Hyun Im, Soonoh Park, Dongho Ahn, Young-Lim Park, Eun-Hee Cho
  • Patent number: 8268694
    Abstract: In a method of manufacturing a transistor, a gate structure is formed on a substrate. First impurities are implanted into the substrate to form an impurity region at an upper portion of the substrate adjacent to the gate structure. An epitaxial layer is formed on the impurity region. An insulation layer having an opening partially exposing the epitaxial layer is formed on the substrate. Second impurities are implanted into a portion of the epitaxial layer exposed by the opening.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: September 18, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck-Chai Jung, Jun-Hee Lim
  • Publication number: 20120228688
    Abstract: A memory device that is as small in area as possible and has an extremely long data retention period. A transistor with extremely low leakage current is used as a cell transistor of a memory element in a memory device. Moreover, in order to reduce the area of a memory cell, the transistor is formed so that its source and drain are stacked in the vertical direction in a region where a bit line and a word line intersect each other. Further, a capacitor is stacked above the transistor.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 13, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Daisuke MATSUBAYASHI
  • Publication number: 20120231592
    Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 13, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gordon Haller, Sanh Dang Tang, Steve Cummings
  • Patent number: 8264022
    Abstract: A semiconductor device and associated methods, the semiconductor device including a semiconductor layer including a first region and a second region, a first contact plug disposed on the semiconductor layer and electrically connected to the first region, a second contact plug disposed on the semiconductor layer and electrically connected to the second region, a conductive layer electrically connected to the first contact plug, the conductive layer having a side surface and a bottom surface, and an insulating layer disposed between the conductive layer and the second contact plug so as to insulate the conductive layer from the second contact plug, the insulating layer facing the side surface and a portion of the bottom surface of the conductive layer.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-man Yoon, Gyo-young Jin, Hyeong-sun Hong, Makoto Yoshida, Bong-soo Kim
  • Patent number: 8247860
    Abstract: A nonvolatile semiconductor memory device includes: a substrate; a stacked body with a plurality of dielectric films and electrode films alternately stacked therein, the stacked body being provided on the substrate and having a step in its end portion for each of the electrode films; an interlayer dielectric film burying the end portion of the stacked body; a plurality of semiconductor pillars extending in the stacking direction of the stacked body and penetrating through a center portion of the stacked body; a charge storage layer provided between one of the electrode films and one of the semiconductor pillars; and a plug buried in the interlayer dielectric film and connected to a portion of each of the electrode films constituting the step, a portion of each of the dielectric films in the center portion having a larger thickness than a portion of each of the dielectric films in the end portion.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Tadashi Iguchi
  • Patent number: 8227351
    Abstract: Reliability and yield of MTJ devices is improved by reducing surface roughness in the MTJ layers of the MTJ devices. Surface roughness is reduced by reducing surface roughness of layers below the MTJ layers such as the bottom electrode layer. Planarizing the bottom electrode layer through chemical mechanical polishing or etch back of spin-on material before depositing the MTJ layers decreases surface roughness of the bottom electrode layer and the MTJ layers. Alternatively, a capping layer may be planarized before deposition of the bottom electrode layer and MTJ layers to reduce surface roughness in the capping layer, the bottom electrode layer, and the MTJ layers.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 24, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Patent number: 8222102
    Abstract: A method of forming a field effect transistor includes forming trench isolation material within a semiconductor substrate and on opposing sides of a semiconductor material channel region along a length of the channel region. The trench isolation material is formed to comprise opposing insulative projections extending toward one another partially under the channel region along the channel length and with semiconductor material being received over the projections. The trench isolation material is etched to expose opposing sides of the semiconductor material along the channel length. The exposed opposing sides of the semiconductor material are etched along the channel length to form a channel fin projecting upwardly relative to the projections. A gate is formed over a top and opposing sides of the fin along the channel length. Other methods and structures are disclosed.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Paul E. Grisham, Gordon A. Haller, Sanh D. Tang
  • Publication number: 20120175734
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. The semiconductor device includes adjacent storage node contact plugs having different heights, and lower-electrode bowing profiles having different heights, such that a spatial margin between the lower electrodes is assured and a bridge fail is prevented, resulting in improved device operation characteristics. The semiconductor device includes a first storage node contact plug and a second storage node contact plug formed over a semiconductor substrate, wherein the second storage node contact plug is arranged at a height different from that of the first storage node contact plug, and a lower electrode formed over the first storage node contact plug and the second storage node contact plug.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 12, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Sang Ho Sohn
  • Publication number: 20120171827
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Publication number: 20120170356
    Abstract: A dynamic random access memory (DRAM) device has a hierarchical bitline structure with local bitlines and global bitlines formed on different metal layers. The local bitlines are separated into a plurality of local bitline sections, and bitline isolation switches are configured to connect or disconnect the local bitline sections to or from the global bitlines. As a result, the local bitlines with higher per-length capacitance can be made shorter, since the global bitline with lower per-length capacitance is used to route the signal from the cell capacitances of the memory cells to the remote sense amplifiers.
    Type: Application
    Filed: July 30, 2010
    Publication date: July 5, 2012
    Applicant: RAMBUS INC.
    Inventor: Thomas Vogelsang
  • Patent number: 8211763
    Abstract: A method of forming a vertical field effect transistor includes etching an opening into semiconductor material. Sidewalls and radially outermost portions of the opening base are lined with masking material. A semiconductive material pillar is epitaxially grown to within the opening adjacent the masking material from the semiconductor material at the opening base. At least some of the masking material is removed from the opening. A gate dielectric is formed radially about the pillar. Conductive gate material is formed radially about the gate dielectric. An upper portion of the pillar is formed to comprise one source/drain region of the vertical transistor. Semiconductive material of the pillar received below the upper portion is formed to comprise a channel region of the vertical transistor. Semiconductor material adjacent the opening is formed to comprise another source/drain region of the vertical transistor. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 3, 2012
    Assignee: Micron Technologies, Inc.
    Inventors: Larson D. Lindholm, David K. Hwang
  • Patent number: 8203148
    Abstract: A device, comprising: a first layer and a second layer wherein both said first layer and said second layer are mono-crystalline, wherein said first layer comprises first transistors, wherein said second layer comprises second transistors, wherein at least one of said second transistors substantially overlays one of said first transistors, and wherein both said first transistors and said second transistors are processed following the same lithography step.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 19, 2012
    Assignee: MonolithIC 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 8198167
    Abstract: A method of manufacturing a semiconductor memory apparatus includes fabricating a cell array to reduce parasite capacitance generated between a bit line and a gate pattern. The method may include determining a plug region by a storage-node plug contact mask and a bit line plug mask. The method may further include: forming a gate pattern of a cell transistor and depositing an insulation layer over a structure including the gate pattern; and forming a hard mask layer over the insulation layer.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: June 12, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Don Lee
  • Publication number: 20120139083
    Abstract: In one embodiment, an integrated circuit (IC) is presented. The IC includes first and second sets of power distribution lines formed in the IC. The IC includes first and second capacitors formed in one or more layers of the IC. A first plurality of vias couple a first input of the first and second capacitors to the first set of power distribution lines, and a second plurality of vias couple a second input of the first and second capacitors to the second set of power distribution lines. The first capacitor and the first plurality of vias and the second plurality of vias coupled thereto having an equivalent series resistance greater than an equivalent series resistance of the second capacitor and the first plurality of vias and the second plurality of vias coupled thereto.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: Xilinx, Inc.
    Inventors: Atul V. Ghia, Christopher P. Wyland, Ketan Sodha, Paul T. Sasaki, Jian Tan, Paul Y. Wu, Romi Mayder
  • Patent number: 8193573
    Abstract: A method of repairing a nonvolatile semiconductor memory device to eliminate defects includes monitoring a memory endurance indicator for a nonvolatile semiconductor memory device contained in a semiconductor package. It is determined whether that the memory endurance indicator exceeds a predefined limit. Finally, in response to determining that the memory endurance indicator exceeds the predefined limit, the device is annealed.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 5, 2012
    Assignee: Rambus Inc.
    Inventors: Gary B. Bronner, Ming Li, Donald R. Mullen, Frederick Ware, Kevin S. Donnelly
  • Patent number: 8193059
    Abstract: A bit line structure and associated fabrication method are provided for a semiconductor element or circuit arrangement. The bit line structure contains a surface bit line and a buried bit line. The buried bit line is formed in an upper section of a trench and is connected to an associated first doping region via a first connection layer. A first trench filling layer, which is insulated from the buried bit line by a second trench insulating layer, is situated in a lower section of the trench.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: June 5, 2012
    Assignee: Infineon Technologies AG
    Inventors: Ronald Kakoschke, Franz Schuler, Georg Tempel
  • Patent number: 8193582
    Abstract: A semiconductor device, including: a first transistor formed on a substrate and including an Hf contained film as its gate insulating film; and a second transistor formed on said substrate and having the same conductive type as that of said first transistor, said second transistor including a silicon oxide film and not including an Hf contained film as its gate insulating film is provided.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshihisa Matsubara
  • Publication number: 20120134192
    Abstract: A semiconductor memory device includes: a plurality of mats; a plurality of sense amplifier regions disposed on a side of the plurality of mats; and a plurality of main bit lines overlapping with a plurality of secondary bit lines, respectively, in regions for the plurality of mats, wherein the plurality of main bit lines and the plurality of secondary bit lines are formed in regions for the plurality of mats and the plurality of sense amplifier regions.
    Type: Application
    Filed: December 27, 2010
    Publication date: May 31, 2012
    Inventor: Jae-Hyun LEE
  • Patent number: 8168530
    Abstract: A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hun Jeong, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Patent number: 8168507
    Abstract: A method for forming a memory device in a semiconductor on insulator substrate is provided, in which a protective oxide that is present on the sidewalls of the trench protects the first semiconductor layer, i.e., SOI layer, of the semiconductor on insulator substrate during bottle etching of the trench. In one embodiment, the protective oxide reduces back channel effects of the transistors to the memory devices in the trench that are formed in the semiconductor on insulator substrate. In another embodiment, a thermal oxidation process increases the thickness of the buried dielectric layer of a bonded semiconductor on insulator substrate by oxidizing the bonded interface between the buried dielectric layer and at least one semiconductor layers of the semiconductor on insulator substrate. The increased thickness of the buried dielectric layer may reduce back channel effects in devices formed on the substrate having trench memory structures.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Naoyoshi Kusaba, Karen A. Nummy, Carl J. Radens, Ravi M. Todi, Geng Wang
  • Publication number: 20120094449
    Abstract: A semiconductor structure having U-shaped transistors includes source/drain regions at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. Methods of forming semiconductor structures are also disclosed.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 19, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Patent number: 8159015
    Abstract: A device is provided that includes memory, logic and capacitor structures on a semiconductor-on-insulator (SOI) substrate. In one embodiment, the device includes a semiconductor-on-insulator (SOI) substrate having a memory region and a logic region. Trench capacitors are present in the memory region and the logic region, wherein each of the trench capacitors is structurally identical. A first transistor is present in the memory region in electrical communication with a first electrode of at least one trench capacitor that is present in the memory region. A second transistor is present in the logic region that is physically separated from the trench capacitors by insulating material. In some embodiments, the trench capacitors that are present in the logic region include decoupling capacitors and inactive capacitors. A method for forming the aforementioned device is also provided.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni
  • Patent number: 8158471
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D Trivedi
  • Publication number: 20120070950
    Abstract: A semiconductor device includes a substrate having a first area and a second area, a first active structure disposed in the first area, a second active structure disposed in the second area, a first transistor disposed in the first area and a second transistor disposed in the second area. The second active structure may have a height substantially the same as a height of the first active structure. The first transistor includes a first gate structure enclosing an upper portion of the first active structure, a first impurity region formed at a lower portion of the first active structure, and a second impurity region formed at the upper portion of the first active structure. The second transistor includes a second gate structure formed on the second active structure and third impurity regions formed at an upper portion of the second active structure.
    Type: Application
    Filed: November 29, 2011
    Publication date: March 22, 2012
    Inventors: Jae-Man Yoon, Yong-Chul Oh, Hui-Jung Kim, Hyun-Woo Chung, Kang-Uk Kim
  • Publication number: 20120068237
    Abstract: After forming a planarization dielectric layer in a replacement gate integration scheme, disposable gate structures are removed and a stack of a gate dielectric layer and a gate electrode layer is formed within recessed gate regions. Each gate electrode structure is then recessed below a topmost surface of the gate dielectric layer. A dielectric metal oxide portion is formed above each gate electrode by planarization. The dielectric metal oxide portions and gate spacers are employed as a self-aligning etch mask in combination with a patterned photoresist to expose and metalize semiconductor surfaces of a source region and an inner electrode in each embedded memory cell structure. The metalized semiconductor portions form metal semiconductor alloy straps that provide a conductive path between the inner electrode of a capacitor and the source of an access transistor.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Geng Wang
  • Patent number: 8138572
    Abstract: The present invention relates to a semiconductor and manufacturing method thereof, in which a nano tube structure is vertically grown to form a lower electrode of a cell region and a via contact of peripheral circuit region. Therefore, capacitance of the lower electrode is secured without an etching process for high aspect ratio. Also, the via contact can be formed for corresponding to the height of the lower electrode.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 20, 2012
    Assignee: Hynix Semiconductor Inc
    Inventor: Keon Yoo
  • Patent number: 8133772
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes an active semiconductor layer, a semiconductor device having a gate disposed on top of the active semiconductor layer, and source and drain regions and a body/channel region disposed within the active semiconductor layer, an insulator layer having a first and second side, the first side being adjacent to the active semiconductor layer, a substrate disposed adjacent to the second side of the insulator layer, a deep trench capacitor disposed under the body/channel region of the semiconductor device. The deep trench capacitor electrically connects with and contacts the body/channel region of the semiconductor device, and is located adjacent to the gate of the semiconductor device. The semiconductor structure increases a critical charge Qcrit, thereby reducing a soft error rate (SER) of the semiconductor device.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kerry Bernstein, Ethan H. Cannon, Francis R. White
  • Patent number: 8134195
    Abstract: A semiconductor device, and a method of fabricating the semiconductor device, which is able to prevent a leaning phenomenon from occurring between the adjacent storage nodes. The method includes forming a plurality of multi-layered pillar type storage nodes each of which is buried in a plurality of mold layers, wherein the uppermost layers of the multi-layered pillar type storage nodes are fixed by a support layer, etching a portion of the support layer to form an opening, and supplying an etch solution through the opening to remove the multiple mold layers. A process of depositing and etching the mold layer by performing the process 2 or more times to form the multi-layered pillar type storage node. Thus, the desired capacitance is sufficiently secured and the leaning phenomenon is avoided between adjacent storage nodes.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: March 13, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kee-Jeung Lee, Jae-Sung Roh, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim, Kwan-Woo Do, Kyung-Woong Park, Jeong-Yeop Lee
  • Patent number: 8124544
    Abstract: It is an object of the present invention to provide a semiconductor device including a wiring having a preferable shape. A manufacturing method includes the steps of forming a first conductive layer connected to an element and a second conductive layer thereover; forming a resist mask over the second conductive layer; processing the second conductive layer by dry etching with the use of the mask; and processing the first conductive layer by wet etching with the mask left, wherein the etching rate of the second conductive layer is higher than that of the first conductive layer in the dry etching, and wherein the etching rate of the second conductive layer is the same as or more than that of the first conductive layer in the wet etching.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: February 28, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoru Okamoto, Teruyuki Fujii, Hideto Ohnuma, Akihiro Ishizuka
  • Patent number: 8119485
    Abstract: Disclosed herein is a fabrication method of a semiconductor device to order to increase an operation liability of the semiconductor device. A method for fabricating a semiconductor device comprises forming a recess in a semiconductor substrate, forming a word line in a lower part of the recess, oxidizing a top portion of the word line, and depositing an insulating material in a remained part of the recess.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: February 21, 2012
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Se hyun Kim
  • Patent number: 8115243
    Abstract: A vertical transistor having an annular transistor body surrounding a vertical pillar, which can be made from oxide. The transistor body can be grown by a solid phase epitaxial growth process to avoid difficulties with forming sub-lithographic structures via etching processes. The body has ultra-thin dimensions and provides controlled short channel effects with reduced need for high doping levels. Buried data/bit lines are formed in an upper surface of a substrate from which the transistors extend. The transistor can be formed asymmetrically or offset with respect to the data/bit lines. The offset provides laterally asymmetric source regions of the transistors. Continuous conductive paths are provided in the data/bit lines which extend adjacent the source regions to provide better conductive characteristics of the data/bit lines, particularly for aggressively scaled processes.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 14, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20120025288
    Abstract: In one exemplary embodiment, a semiconductor structure including: a silicon-on-insulator substrate having of a top silicon layer overlying an insulation layer, where the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, where the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, where at least a first portion of the backside strap underlies the doped portion of the top silicon layer, where the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, where the second epitaxially-deposited material further at least partially overlies the first portion of the backside strap.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20120012913
    Abstract: A semiconductor device including a vertical transistor and a method for manufacturing the same may reduce a cell area in comparison with a conventional layout of 8F2 and 6F2. Also, the method does not require forming a bit line contact, a storage node contact or a landing plug, thereby decreasing the process steps. The semiconductor device including a vertical transistor comprises: an active region formed in a semiconductor substrate; a bit line disposed in the lower portion of the active region; a word line buried in the active region; and a capacitor disposed over the upper portion of the active region and the word line.
    Type: Application
    Filed: December 22, 2010
    Publication date: January 19, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Kyoung Han LEE
  • Publication number: 20120009743
    Abstract: A method of fabricating a dynamic random access memory (DRAM) can include depositing a semiconductor electrode layer in contact with a surface of a semiconductor substrate; patterning the electrode layer to form a plurality of access junction field effect transistor (JFET) gate electrodes and a plurality of sense amplifier bipolar junction transistor (BJT) electrodes; and forming a charge storage structure coupled to a source of each access JFET.
    Type: Application
    Filed: September 15, 2011
    Publication date: January 12, 2012
    Applicant: SUVOLTA, INC.
    Inventor: Douglas B. Boyle
  • Patent number: 8093107
    Abstract: A thyristor based semiconductor device includes a thyristor having cathode, P-base, N-base and anode regions disposed in electrical series relationship. The N-base region for the thyristor has a cross-section that defines an inverted “T” shape, wherein a buried well in semiconductor material forms is operable as a part of the N-base. The stem to the inverted “T” shape extends from the upper surface of the semiconductor material to the buried well. The P-base region for the thyristor extends laterally outward from a side of the stem that is opposite the anode region of the thyristor, and is further bounded between the buried well and a surface of the semiconductor material. A thinned portion for the N-base is defined between the cathode region of the thyristor and the buried well, and may include supplemental dopant of concentration greater than that for some other portion of the N-base.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 10, 2012
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Farid Nemati, Scott Robins, Kevin J. Yang
  • Patent number: 8071440
    Abstract: A method of fabricating a dynamic random access memory is provided. First, a substrate at least having a memory device area and a peripheral device area is provided, wherein an isolation structure and a capacitor are formed in the substrate of the memory device area, and an isolation structure and a well are formed in the substrate of the peripheral device area. A first oxide layer is formed on the substrate of the peripheral device area, and a passing gate isolation structure is formed on the substrate of the memory device area at the same time. A second oxide layer is formed on the substrate of the memory device area. And a first transistor is formed on the substrate of the memory device area, a passing gate is formed on the passing gate isolation structure, and a second transistor is formed on the substrate of the peripheral device area.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: December 6, 2011
    Assignee: United Microelectronics Corporation
    Inventors: Po-Sheng Lee, Yu-Hsien Lin, Wen-Fang Lee
  • Publication number: 20110291170
    Abstract: In a semiconductor device, capacitors may be formed so as to be in direct contact with a transistor by using a shared transistor region, such as a drain region or a source region of closely spaced transistors, as one capacitor electrode, while the other capacitor electrode is provided in the form of a buried electrode in the dielectric material of the contact level. To this end, dielectric material may be deposited so as to reliably form a void, wherein, at any appropriate manufacturing stage, a capacitor dielectric material may be provided so as to separate the capacitor electrodes.
    Type: Application
    Filed: December 10, 2010
    Publication date: December 1, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Dmytro Chumakov, Tino Hertzsch
  • Publication number: 20110291166
    Abstract: An integrated circuit having finFETs and a metal-insulator-metal (MIM) fin capacitor and methods of manufacture are disclosed. A method includes forming a first finFET comprising a first dielectric and a first conductor; forming a second finFET comprising a second dielectric and a second conductor; and forming a fin capacitor comprising the first conductor, the second dielectric, and the second conductor.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Toshiharu Furukawa, Chengwen Pei
  • Publication number: 20110287595
    Abstract: Interconnections are formed over an interlayer insulating film which covers MISFETQ1 formed on the principal surface of a semiconductor substrate, while dummy interconnections are disposed in a region spaced from such interconnections. Dummy interconnections are disposed also in a scribing area. Dummy interconnections are not formed at the peripheries of a bonding pad and a marker. In addition, a gate electrode of a MISFET and a dummy gate interconnection formed of the same layer are disposed. Furthermore, dummy regions are disposed in a shallow trench element-isolation region. After such dummy members are disposed, an insulating film is planarized by the CMP method.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Inventors: Yasushi Koubuchi, Koichi Nagasawa, Masahiro Moniwa, Youhei Yamada, Toshifumi Takeda
  • Publication number: 20110284941
    Abstract: A semiconductor device includes: a transistor including source and drain diffusion-layers, a gate insulating film and a gate electrode; first and second plugs formed in a first interlayer-insulating film and connected to the source and drain diffusion-layers, respectively; a third plug extending through a second interlayer-insulating film and connected to the first plug; a first interconnection-wire formed on the second interlayer-insulating film and connected to the third plug; a second interconnection-wire formed on a third interlayer-insulating film and intersecting the first interconnection-wire; a fourth interlayer-insulating film; a hole extending through the fourth, third and second interlayer-insulating films, the hole being formed such that a side surface of the second interconnection-wire is exposed; and a fourth plug filling the hole via an intervening dielectric film and connected to the second plug, wherein a capacitor is formed using the fourth plug, the second interconnection-wire and the diele
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Hiroyuki UCHIYAMA
  • Patent number: 8062921
    Abstract: A phase change memory may be made with improved speed and stable characteristics over extended cycling. The alloy may be selected by looking at alloys that become stuck in either the set or the reset state and finding a median or intermediate composition that achieves better cycling performance. Such alloys may also experience faster programming and may have set and reset programming speeds that are substantially similar.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 22, 2011
    Assignee: Intel Corporation
    Inventors: Guy C. Wicker, Carl Schell, Sergey A. Kostylev, Stephen J. Hudgens
  • Patent number: 8058095
    Abstract: Methods and devices associated with phase change cell structures are described herein. In one or more embodiments, a method of forming a phase change cell structure includes forming a substrate protrusion that includes a bottom electrode, forming a phase change material on the substrate protrusion, forming a conductive material on the phase change material, and removing a portion of the conductive material and a portion of the phase change material to form an encapsulated stack structure.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu