Characterized By Specified Shape Or Size Of Pn Junction Or By Specified Impurity Concentration Gradient Within The Device (epo) Patents (Class 257/E29.005)

  • Publication number: 20100155801
    Abstract: An integrated circuit includes a semiconducting substrate (110), electrically conductive layers (120) over the semiconducting substrate, and a capacitor (130) at least partially embedded within the semiconducting substrate such that the capacitor is entirely underneath the electrically conductive layers. A storage node voltage is on an outside layer (132) of the capacitor. In the same or another embodiment, the integrated circuit may act as a 1T-1C embedded memory cell including the semiconducting substrate, an electrically insulating stack (160) over the semiconducting substrate, a transistor (140) including a source/drain region (142) within the semiconducting substrate and a gate region (141) above the semiconducting substrate, a trench (111) extending through the electrically insulating layers and into the semiconducting substrate, a first electrically insulating layer (131) located within the trench, and the capacitor located within the trench interior to the first electrically insulating layer.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Brian S. Doyle, Dinesh Somasekhar, Gilbert Dewey, Satyarth Suri
  • Publication number: 20100155904
    Abstract: A semiconductor device including a CMP dummy pattern and a method for manufacturing the same are provided. The warpage of a wafer can be prevented by forming the CMP dummy pattern in the same direction and/or at the same angle as a pattern of a cell region. Accordingly, overlay error caused by etching residues is reduced, thereby improving the yield of the semiconductor device.
    Type: Application
    Filed: June 26, 2009
    Publication date: June 24, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventors: Hyoung Soon YUNE, Yeong Bae Ahn
  • Publication number: 20100148323
    Abstract: A subject of the present invention is to realize an impurity doping not to bring about a rise of a substrate temperature. Another subject of the present invention is to measure optically physical properties of a lattice defect generated by the impurity doping step to control such that subsequent steps are optimized. An impurity doping method, includes a step of doping an impurity into a surface of a solid state base body, a step of measuring an optical characteristic of an area into which the impurity is doped, a step of selecting annealing conditions based on a measurement result to meet the optical characteristic of the area into which the impurity is doped, and a step of annealing the area into which the impurity is doped, based on the selected annealing conditions.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Cheng-Guo Jin, Yuichiro Sasaki, Bunji Mizuno
  • Publication number: 20100148152
    Abstract: A population of nanowires can be prepared by a method involving electric field catalyzed growth and alteration based on surface charge density.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 17, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: August Dorn, Cliff R. Wong, Moungi G. Bawendi
  • Publication number: 20100140730
    Abstract: A semiconductor device is disclosed. The semiconductor device comprises, a first region of a first conductivity type, a second region of a second conductivity type disposed adjacent to the first region to form a p-n junction structure, a resistance modification region of the second conductivity type, and a field response modification region of the second conductivity type disposed between the resistance modification region and the second region, wherein the field response modification region comprises a varying dopant concentration distribution along a thickness direction of the field response modification region.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Stanislav Ivanovich Soloviev, Ho-Young Cha, Peter Micah Sandvik, Alexey Vert, Jody Alan Fronheiser
  • Publication number: 20100140735
    Abstract: A compound semiconductor workpiece with reduced defects and greater strength that uses Group II-VI semiconductor nanoislands on a substrate. Additional layers of Group II-VI semiconductor are grown on the nanoislands using MBE until the newly formed layers coalesce to form a uniform layer of a desired thickness. In an alternate embodiment, nanoholes are patterned into a silicon nitride layer to expose an elemental silicon surface of a substrate. Group II-VI semiconductor material is grown in the holes until the layers fill the holes and coalesce to form a uniform layer of a desired thickness. Suitable materials for the substrate include silicon and silicon on insulator materials and cadmium telluride may be used as the Group II-VI semiconductor.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Applicant: EPIR TECHNOLOGIES, INC.
    Inventors: Ramana BOMMENA, Sivalingam Sivananthan, Michael CARMODY
  • Publication number: 20100140756
    Abstract: An object of the present invention is to provide a semiconductor thin film device which employs a silicon oxide thin film having an equivalent level of high insulating performance to those currently used in electronic devices, through a low-temperature printing process on a plastic substrate having plasticity or other types of substrates at a temperature equal to or lower than the heat resistant temperature of the substrate, and to provide a method for forming the device. The semiconductor thin film device is formed as follows: a coating film of a silicon compound including a silazane structure or a siloxane structure is formed on a plastic substrate having plasticity; the coating film is converted into a silicon oxide thin film; and the thin film is utilized as part of an insulating layer or a sealing layer.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 10, 2010
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Kozasa, Toshihide Kamata
  • Publication number: 20100123122
    Abstract: Select devices including an open volume that functions as a high bandgap material having a low dielectric constant are disclosed. The open volume may provide a more nonlinear, asymmetric I-V curve and enhanced rectifying behavior in the select devices. The select device may comprise, for example, a metal-insulator-insulator-metal (MIIM) device. Various methods may be used to form select devices and memory systems including such select devices. Memory devices and electronic systems include such select devices.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Bhaskar Srinivasan, Gurtej S. Sandhu
  • Patent number: 7719080
    Abstract: A semiconductor device includes a drift layer of a first conductivity type having a doping concentration and a conduction layer also of the first conductivity type on the drift layer that has a doping concentration greater than the doping concentration of the drift layer. The device also includes a pair of trench structures, each including a trench contact at one end and a region of a second conductivity type opposite the first conductivity type, at another end. Each trench structure extends into and terminates within the conduction layer such that the second-conductivity-type region is within the conduction layer. A first contact structure is on the drift layer opposite the conduction layer while a second contact structure is on the conduction layer.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: May 18, 2010
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: Qingchun Zhang
  • Publication number: 20100117202
    Abstract: A mold (10) including a first mold part (12) and a second mold part (14) define a mold cavity (16) therebetween. A gate (18) is formed in at least one of the first and second mold parts (12) and (14) such that the gate (18) communicates with the mold cavity (16). A vent (20) having a constricted portion (22) is arranged to communicate with the mold cavity (16). A substrate (28) including a base substrate (30) and an electrically conductive pattern (32) and (34) formed on the base substrate (30) may be received in the mold (10). A solder resist layer (36) is formed on the base substrate (30) and a portion of the electrically conductive pattern (32). A plurality of grooves (38) and (40) is formed in a staggered arrangement around a periphery of a molding area (42) on the substrate (28).
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Poh Leng Eu, Boon Yew Low, Wai Keong Wong
  • Patent number: 7714364
    Abstract: A semiconductor device is disclosed, which comprises a gate electrode having a laminated structure of a polycrystalline silicon film or a polycrystalline germanium film containing arsenic and a first nickel silicide layer formed in sequence on an element forming region of a semiconductor substrate through a gate insulating film, a sidewall insulating film formed on a side surface of the gate electrode, source/drain layers containing arsenic formed in the element forming region at both side portions of the gate electrode, and second nickel silicide layers formed on the source/drain layers, wherein a peak concentration of arsenic contained in the gate electrode is at least 1/10 of a peak concentration of arsenic contained in the source/drain layers.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Hokazono
  • Publication number: 20100109054
    Abstract: Provided is a semiconductor device. The device includes a substrate having a photo acid generator (PAG) layer on the substrate. The PAG layer is exposed to radiation. A photoresist layer is formed on the exposed PAG layer. The exposed PAG layer generates an acid. The acid decomposes a portion of the formed photoresist layer. In one embodiment, the PAG layer includes organic BARC. The decomposed portion of the photoresist layer may be used as a masking element.
    Type: Application
    Filed: December 31, 2009
    Publication date: May 6, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: George Liu, Kuei Shun Chen, Vencent Chang, Shang-Wen Chang
  • Publication number: 20100109045
    Abstract: An integrated circuit system that includes: providing a substrate including an active device; forming a trench within the substrate adjacent the active device; forming a first layer with a first lattice constant within the trench; and forming a second layer with a second lattice constant over the first layer, the second lattice constant differing from the first lattice constant.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Jin Ping Liu, Yisuo Li, Alex K.H. See, Meisheng Zhou, Liang-Choo Hsia
  • Publication number: 20100102360
    Abstract: The present invention provides a method for producing a Group III nitride semiconductor. The method includes forming a groove in a surface of a growth substrate through etching; forming a buffer film on the groove-formed surface of the growth substrate through sputtering; heating, in an atmosphere containing hydrogen and ammonia, the substrate to a temperature at which a Group III nitride semiconductor of interest is grown; and epitaxially growing the Group III nitride semiconductor on side surfaces of the groove at the growth temperature. The thickness of the buffer film or the growth temperature is regulated so that the Group III nitride semiconductor is grown primarily on the side surfaces of the groove in a direction parallel to the main surface of the growth substrate.
    Type: Application
    Filed: December 23, 2009
    Publication date: April 29, 2010
    Applicant: Toyoda Gosei Co., Ltd.
    Inventors: Naoyuki Nakada, Koji Okuno, Yasuhisa Ushida
  • Publication number: 20100102420
    Abstract: To provide a semiconductor device in which an interval between first wells can be shortened by improving a separation breakdown voltage between the first wells and a method for manufacturing the same.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 29, 2010
    Applicant: NEC Electronics Corporation
    Inventors: Hidemitsu Mori, Kazuhiro Takimoto, Toshiyuki Shou, Kenji Sasaki, Yutaka Akiyama
  • Publication number: 20100090250
    Abstract: A semiconductor device includes: a semiconductor layer; at least one electrode formed on a semiconductor layer to be in contact with the semiconductor layer; and a passivation film covering the semiconductor layer and at least part of the top surface of the electrode to protect the semiconductor layer and formed of a plurality of sub-films. The passivation film includes a first sub-film made of aluminum nitride.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 15, 2010
    Applicant: PANASONIC CORORATION
    Inventors: Tomohiro MURATA, Hiroaki Ueno, Hidetoshi Ishida, Tetsuzo Ueda, Yasuhiro Uemoto, Tsuyoshi Tanaka, Daisuke Ueda
  • Publication number: 20100090311
    Abstract: Methods of growing Group-III nitride thin-film structures having reduced dislocation density are provided. Methods in accordance with the present invention comprise growing a Group-III nitride thin-film material while applying an ion flux and preferably while the substrate is stationary or non-rotating substrate. The ion flux is preferably applied as an ion beam at a glancing angle of incidence. Growth under these conditions creates a nanoscale surface corrugation having a characteristic features size, such as can be measured as a wavelength or surface roughness. After the surface corrugation is created, and preferably in the same growth reactor, the substrate is rotated in an ion flux which cause the surface corrugation to be reduced. The result of forming a surface corrugation and then subsequently reducing or removing the surface corrugation is the formation of a nanosculpted region and polished transition region that effectively filter dislocations.
    Type: Application
    Filed: June 4, 2007
    Publication date: April 15, 2010
    Inventors: Philip I. Cohen, Bentao Cui
  • Publication number: 20100078773
    Abstract: A semiconductor device includes a substrate, a semiconductor device structure over the substrate, an insulating film that covers the semiconductor device structure, and a stress-compensation film over the insulating film. The stress-compensation film has a first stress that compensates a second stress working to bend the substrate.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 1, 2010
    Applicant: ELPIDA MEMORY. INC.
    Inventor: Shigeo Ishikawa
  • Publication number: 20100078775
    Abstract: A semiconductor device has a cell field with drift zones of a first type of conductivity and charge carrier compensation zones of a second type of conductivity complementary to the first type. An edge region which surrounds the cell field has a higher blocking strength than the cell field, the edge region having a near-surface area which is undoped to more weakly doped than the drift zones, and beneath the near-surface area at least one buried, vertically extending complementarily doped zone is positioned.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Franz Hirler, Armin Willmeroth, Michael Rueb, Holger Kapels
  • Publication number: 20100078626
    Abstract: To provide a p-type semiconductor material having a band matching with a hole injection layer and suitable for an anode electrode that can be formed on a glass substrate or a polymer substrate, and to provide a semiconductor device. In the p-type semiconductor material, 1×1018 to 5×1020 cm?3 of Ag is contained in a compound containing Zn and Se, and the semiconductor device includes a substrate and a p-type electrode layer arranged on this substrate and having the aforementioned p-type semiconductor material.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 1, 2010
    Applicant: Hoya Corporation
    Inventors: Masahiro Orita, Takashi Narushima, Hiroaki Yanagida
  • Patent number: 7687891
    Abstract: A semiconductor device includes a first layer having a first conductivity type, a second layer having a second conductivity type, a third layer having the second conductivity type, one or more first zones having the first conductivity type and located within the second layer, wherein each one of the one or more first zones is adjacent to the third layer, and one or more second zones having the second conductivity type and located within the second layer, wherein each one of the one or more second zones is adjacent to one or more of the one or more first zones.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 30, 2010
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Hans-Peter Felsl
  • Publication number: 20100065815
    Abstract: A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
    Type: Application
    Filed: November 18, 2009
    Publication date: March 18, 2010
    Applicant: International Business Machines Corporation
    Inventors: Nestor Alexander Bojarczuk, JR., Douglas Andrew Buchanan, Supratik Guha, Vijay Narayanan, Lars-Ake Ragnarsson
  • Publication number: 20100065930
    Abstract: The method of etching a sacrificial layer according to the present invention includes the steps of forming a sacrificial layer having a protrusive shape on a base layer, forming a covering film covering the sacrificial layer, forming a protective film made of a material whose etching selection ratio to the sacrificial layer is greater than the etching selection ratio of the covering film to the sacrificial layer on a portion of the covering film opposed to the side surface of the sacrificial layer, and etching the sacrificial layer after the formation of the protective film.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 18, 2010
    Applicant: ROHM CO., LTD.
    Inventor: Goro Nakatani
  • Publication number: 20100059862
    Abstract: A thinned semiconductor wafer and a method for thinning the semiconductor wafer. A semiconductor wafer is thinned from its backside to form a cavity in a central region of the backside of the semiconductor wafer. Forming the cavity also forms a ring support structure in a peripheral region of the semiconductor wafer. The ring support structure has an inner edge and an outer edge. The inner edge may be beveled or have a stepped shape.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 11, 2010
    Inventor: Michael J. Seddon
  • Publication number: 20100052116
    Abstract: The present invention relates to a semiconductor device with nanowire-type interconnect elements and a method for fabricating the same. The device comprises a metal structure with at least one self-assembled metal dendrite and forming an interconnect element (424) between a first and a second metal structure.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 4, 2010
    Applicant: NXP, B.V.
    Inventors: Kevin Cooper, Srdjan Kordic
  • Publication number: 20100055507
    Abstract: A 3-D structure formed in a recess of a substrate delimited by walls, including a large number of rectangle parallelepipedic blades extending from the bottom of the recess to the substrate surface while being oriented perpendicularly to one another and formed in a pattern covering the whole surface of the recess, some blades being non-secant to one of the walls, each non-secant blade being connected to one of the walls by at least another perpendicular blade.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 4, 2010
    Applicant: STMicroelectronics (Tours) SAS
    Inventor: Jean-Luc Morand
  • Publication number: 20100052112
    Abstract: Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.
    Type: Application
    Filed: April 3, 2009
    Publication date: March 4, 2010
    Inventors: John A. ROGERS, Tae Ho KIM, Won Mook CHOI, Dae Hyeong KIM, Matthew MEITL, Etienne MENARD, John CARLISLE
  • Publication number: 20100044829
    Abstract: The present invention is a method for producing an SOI substrate including the steps of: preparing a bond wafer and a base wafer which are composed of single crystal silicon wafers; forming an oxide film on a surface of at least one of the bond wafer and the base wafer so that a thickness of a buried oxide film after bonding becomes 3 ?m or more; bonding the bond wafer and the base wafer via the oxide film; performing a law-temperature heat treatment at a temperature of 400° C. or more and 1000° C. or less to the bonded substrate; thinning the bond wafer to be an SOI layer; and increasing bonding strength by performing a high-temperature heat treatment at a temperature exceeding 1000° C. Thus, a method for producing an SOI substrate by which generation of slip dislocations is suppressed and an SOI substrate having a high-quality SOI layer can be obtained, for producing a SOI layer in which the thickness of a buried oxide film is thick as 3 ?m or more by a bonding method, etc. are provided.
    Type: Application
    Filed: April 15, 2008
    Publication date: February 25, 2010
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventor: Masao Matsumine
  • Publication number: 20100044839
    Abstract: Provided are a semiconductor device and a method of manufacturing the same. In semiconductor devices of the conventional technologies, the chip size is increased when a breakdown voltage is increased. In the semiconductor device of this invention, an end of a pn junction interface (5) of a collector region (2) and a base region (3) is formed of a mesa groove (6) made of a trench. Thus, the chip size is not increased even when the mesa groove (6) is deeply formed to increase the breakdown voltage.
    Type: Application
    Filed: October 12, 2007
    Publication date: February 25, 2010
    Applicants: Sanyo Electric Co., Ltd., Sanyo Semoconductor Co., Ltd.
    Inventors: Kikuo Okada, Kojiro Kameyama
  • Publication number: 20100025659
    Abstract: Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 4, 2010
    Applicant: Nantero, Inc.
    Inventors: CLAUDE L. BERTIN, THOMAS RUECKES, BRENT M. SEGAL, BERNHARD VOGELI, DARREN K. BROCK, VENKATACHALAM C. JAIPRAKASH
  • Publication number: 20100026779
    Abstract: A novel semiconductor article manufacturing method and the like are provided. A method of manufacturing a semiconductor article having a compound semiconductor multilayer film formed on a semiconductor substrate includes: preparing a member including an etching sacrificial layer (1010), a compound semiconductor multilayer film (1020), an insulating film (2010), and a semiconductor substrate (2000) on a compound semiconductor substrate (1000), and having a first groove (2005) which passes through the semiconductor substrate and the insulating film, and a semiconductor substrate groove (1025) which is a second groove provided in the compound semiconductor multilayer film so as to be connected to the first groove, and bringing an etchant into contact with the etching sacrificial layer through the first groove and then the second groove and etching the etching sacrificial layer to separate the compound semiconductor substrate from the member.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 4, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takao Yonehara, Kenji Yamagata, Yoshinobu Sekiguchi, Kojiro Nishi
  • Publication number: 20100019317
    Abstract: Roughly described, methods and systems for improving integrated circuit layouts and fabrication processes in order to better account for stress effects. Dummy features can be added to a layout either in order to improve uniformity, or to relax known undesirable stress, or to introduce known desirable stress. The dummy features can include dummy diffusion regions added to relax stress, and dummy trenches added either to relax or enhance stress. A trench can relax stress by filling it with a stress-neutral material or a tensile strained material. A trench can increase stress by filling it with a compressive strained material. Preferably dummy diffusion regions and stress relaxation trenches are disposed longitudinally to at least the channel regions of N-channel transistors, and transversely to at least the channel regions of both N-channel and P-channel transistors. Preferably stress enhancement trenches are disposed longitudinally to at least the channel regions of P-channel transistors.
    Type: Application
    Filed: October 5, 2009
    Publication date: January 28, 2010
    Applicant: SYNOPSYS, INC.
    Inventors: Victor Moroz, Dipankar Pramanik, Xi-Wei Lin
  • Publication number: 20100013057
    Abstract: A semiconductive substrate (1) is described that is suitable for realising electronic and/or optoelectronic devices of the type comprising at least one substrate (3), in particular of single crystal silicon, and an overlying layer of single crystal silicon (5). Advantageously, according to the invention, the semiconductive substrate (1) comprises at least one functional coupling layer (10) suitable for reducing the defects linked to the differences in the materials used. In particular, the functional coupling layer 10 comprises a corrugated portion (6) made in the layer of single crystal silicon (5) and suitable for reducing the defects linked to the differences in lattice constant of such materials used.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 21, 2010
    Applicant: Consiglio Nazionale Delle Ricerche
    Inventors: Giuseppe Alessio Maria D'Arrigo, Francesco La Via
  • Publication number: 20100012981
    Abstract: A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. The semiconductor device includes a gate electrode level region including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the number of conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level region includes conductive features defined along at least four different virtual lines of extent in the first parallel direction.
    Type: Application
    Filed: September 25, 2009
    Publication date: January 21, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20100006898
    Abstract: A restricted layout region includes a diffusion level layout that includes a number of diffusion region layout shapes to be formed within a portion of a substrate of a semiconductor device. The diffusion region layout shapes define at least one p-type diffusion region and at least one n-type diffusion region. The restricted layout region includes a gate electrode level layout defined to include rectangular-shaped layout features placed to extend in only a first parallel direction. Some of the rectangular-shaped layout features form gate electrodes of respective PMOS transistor devices, and some of the rectangular-shaped layout features form gate electrodes of respective NMOS transistor devices. A total number of the PMOS transistor devices and the NMOS transistor devices in the restricted layout region of the semiconductor device is greater than or equal to eight. Additionally, the restricted layout region corresponds to an entire gate electrode level of a cell layout.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 14, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20100006902
    Abstract: A substrate portion of a semiconductor device is formed to include a plurality of diffusion regions that are defined in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. A gate electrode level region is formed above the substrate portion to include a number of conductive features defined to extend in only a first parallel direction. Each of the number of conductive features within the gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature. The conductive features within the gate electrode level region are defined along at least four different virtual lines of extent in the first parallel direction. A width size of the conductive features within the gate electrode level region is measured perpendicular to the first parallel direction and is less than a wavelength of light used in a photolithography process to fabricate the conductive features.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 14, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20100006903
    Abstract: A semiconductor device includes a substrate portion having a plurality of diffusion regions defined in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. A gate electrode level region is formed above the substrate portion to include a number of conductive features defined to extend in only a first parallel direction and fabricated from a respective originating rectangular-shaped layout feature. The gate electrode level region includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. A width size of the conductive features within the gate electrode level region is measured perpendicular to the first parallel direction. Within a five wavelength photolithographic interaction radius within the gate electrode level region, the width size of the conductive features is less than 193 nanometers, which is the wavelength of light used in a photolithography process to fabricate the conductive features.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 14, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20100006899
    Abstract: A semiconductor device is disclosed as having a substrate portion that includes a plurality of diffusion regions that include at least one p-type diffusion region and at least one n-type diffusion region. A gate electrode level region is formed above the substrate portion to include a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature. Some of the conductive features within the gate electrode level region extend over the p-type diffusion regions to form respective PMOS transistor devices. Also, some of the conductive features within the gate electrode level region extend over the n-type diffusion regions to form respective NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the gate electrode level region.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 14, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20100006901
    Abstract: A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein. The plurality of diffusion regions are separated from each other by one or more non-active regions of the substrate portion. The plurality of diffusion regions are defined in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. The semiconductor device includes a gate electrode level region formed above the substrate portion to include a number of conductive features defined to extend in only a first parallel direction. Each of the number of conductive features within the gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature. The number of conductive features within the gate electrode level region includes conductive features defined along at least four different virtual lines of extent in the first parallel direction across the gate electrode level region.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 14, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20100001381
    Abstract: Embodiments relate to a semiconductor device and a method of manufacturing a semiconductor. In embodiments, the method may include a first exposure step of performing an exposure process for forming a first photoresist on a semiconductor substrate at one side of the outside of a trench pattern which will be formed, a first etching step of performing a predetermined dry etching method with respect to the first photoresist, a second exposure step of performing an exposure process for forming a second photoresist at the other side of the outside of the trench pattern, which is a side opposite to the first photoresist, and a second etching step of performing the predetermined dry etching method with respect to the second photoresist.
    Type: Application
    Filed: September 15, 2009
    Publication date: January 7, 2010
    Inventor: Young-Je Yun
  • Publication number: 20100001321
    Abstract: A restricted layout region in a layout of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes. The plurality of diffusion region layout shapes are defined in a non-symmetrical manner relative to a centerline defined to bisect the diffusion level layout. A gate electrode level layout is defined to include a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. The gate electrode level layout includes linear-shaped layout features defined along at least four different lines of extent in the first parallel direction. Each of a number of interconnect level layouts is defined to pattern conductive features within corresponding interconnect levels above the gate electrode level.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 7, 2010
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20090321719
    Abstract: An integrated ion chip for a large scale quantum device of interconnected ion (or other charged particles) traps each holding a small number of particles for a finite period of time, in a preferred embodiment using sapphire as the substrate, having an internal trapping, translation, and quantum manipulation zones and having a first set of electrodes and a second set of electrodes for trapping ions and for quantum manipulations, in a preferred embodiment using silicon carbide (and materials of similar characteristics) as a core structure material, and utilizing unique fabrication processes using micromachining and thin film techniques.
    Type: Application
    Filed: May 1, 2008
    Publication date: December 31, 2009
    Applicant: Ben Gurion University of The Negev Research And Development Authority
    Inventors: Ron FOLMAN, Alexander Fayer, Benny Hadad, Amir Ben-Tal, Amit Ben-Kish
  • Publication number: 20090321712
    Abstract: A plasmonic coupling device (1) comprising a first structure (2), and a second structure (3) comprising two or more conductive nanoparticles (7), wherein each nanoparticle is elongate and is attached to the first structure such that it is oriented with a major axis thereof substantially perpendicular to the first structure. In a plasmonic coupling device comprising such nanoparticles, radiation incident on the device can produce localised surface plasmons in the nanoparticles. The localised surface plasmons can become deiocalised along the device, due to the near-field electromagnetic interaction between the two or more nanoparticles or between the one or more nanoparticles of an assembly and a nearby assembly or assemblies. This interaction allows for electro-magnetic energy, and the radiation, to be efficiently coupled between the nanoparticles or between the assemblies of one or more nanoparticles.
    Type: Application
    Filed: June 12, 2007
    Publication date: December 31, 2009
    Inventors: Robert J. Pollard, William Hendren, Paul Evans, Anatoly Zayats, Gregory Wurtz
  • Publication number: 20090321885
    Abstract: Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a universally shrinkable support handle onto the epitaxial material, wherein the universally shrinkable support handle contains a shrinkable material, and shrinking the support handle to form tension in the support handle and compression in the epitaxial material during a shrinking process. The method further includes removing the sacrificial layer during an etching process, peeling the epitaxial material from the substrate while forming an etch crevice therebetween, and bending the support handle to have substantial curvature.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Melissa Archer, Harry Atwater, Thomas Gmitter, Gang He, Andreas Hegedus, Gregg Higashi, Stewart Sonnenfeldt
  • Publication number: 20090321886
    Abstract: Embodiments of the invention generally relate to epitaxial lift off (ELO) thin films and devices and methods used to form such films and devices. In one embodiment, a method for forming an ELO thin film is provided which includes depositing an epitaxial material over a sacrificial layer on a substrate, adhering a unidirectionally induced-shrinkage support handle onto the epitaxial material, and shrinking the support handle tangential to reinforcement fibers therein to form tension in the support handle and compression in the epitaxial material during the shrinking process. The unidirectionally induced-shrinkage support handle contains a shrinkable material and reinforcement fibers extending unidirectional throughout the shrinkable material. The method further includes removing the sacrificial layer during an etching process, peeling the epitaxial material from the substrate while forming an etch crevice therebetween, and bending the support handle to have substantial curvature.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Applicant: ALTA DEVICES, INC.
    Inventors: Thomas Gmitter, Gang He, Andreas Hegedus
  • Publication number: 20090315153
    Abstract: To provide a method of manufacturing a nano structure having a pattern of 2 ?m or more in depth formed on the surface of a substrate containing Si and a nano structure having a pattern of a high aspect and nano order. A nano structure having a pattern of 2 ?m or more in depth formed on the surface of a substrate containing Si, wherein the nano structure is configured to contain Ga or In on the surface of the pattern, and has the maximum value of the concentration of the Ga or the In positioned within 50 nm of the surface of the pattern in the depth direction of the substrate. Further, its manufacturing method is configured such that the surface of the substrate containing Si is irradiated with a focused Ga ion or In ion beam, and the Ga ions or the In ions are injected, while sputtering away the surface of the substrate, and a layer containing Ga or In is formed on the surface of the substrate, and with this layer taken as an etching mask, a dry etching is performed.
    Type: Application
    Filed: April 25, 2008
    Publication date: December 24, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Taiko Motoi, Kenji Tamamori, Shinan Wang, Masahiko Okunuki, Haruhito Ono, Toshiaki Aiba, Nobuki Yoshimatsu
  • Publication number: 20090315078
    Abstract: AlGaN/GaN HEMTs are disclosed having a thin AlGaN layer to reduce trapping and also having additional layers to reduce gate leakage and increase the maximum drive current. One HEMT according to the present invention comprises a high resistivity semiconductor layer with a barrier semiconductor layer on it. The barrier layer has a wider bandgap than the high resistivity layer and a 2DEG forms between the layers. Source and drain contacts contact the barrier layer, with part of the surface of the barrier layer uncovered by the contacts. An insulating layer is included on the uncovered surface of the barrier layer and a gate contact is included on the insulating layer. The insulating layer forms a barrier to gate leakage current and also helps to increase the HEMT's maximum current drive. The invention also includes methods for fabricating HEMTs according to the present invention. In one method, the HEMT and its insulating layer are fabricated using metal-organic chemical vapor deposition (MOCVD).
    Type: Application
    Filed: September 4, 2009
    Publication date: December 24, 2009
    Inventors: Primit Parikh, Umesh Mishra, Yifeng Wu
  • Publication number: 20090316468
    Abstract: A first memory level includes a first plurality of memory cells that includes every memory cell in the first memory level. Each memory cell includes a vertically oriented p-i-n diode in the form of a pillar that includes a bottom heavily doped p-type region, a middle intrinsic or lightly doped region, and a top heavily doped n-type region. The first plurality of memory cells includes programmed cells and unprogrammed cells, wherein programmed cells comprise at least half of the first plurality of memory cells. Current flowing through the p-i-n diodes of at least 99 percent of the programmed cells when a voltage between about 1.5 volts and about 3.0 volts is applied between the bottom heavily doped p-type region and the top heavily doped n-type region is at least 1.5 microamps.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 24, 2009
    Applicant: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Publication number: 20090309090
    Abstract: A nanostructure comprising a first structure comprising conductive material, which is attached to a second structure comprising one or more portions of conductive material separated by insulator material, which is attached to a third structure comprising a material in which a change can be effected. The third structure may comprise a dielectric or ferroelectric material, and the change effected in the material may be polarization of the material. The nanostructure may comprise one or more nanocapacitors, each of which comprises a part of the third structure in which a change comprising polarization may be effected. The nanocapacitors may be used to store data.
    Type: Application
    Filed: April 20, 2007
    Publication date: December 17, 2009
    Applicant: THE QUEEN'S UNIVERSITY OF BELFAST
    Inventors: Robert Morrison Bowman, Robert James Pollard, John Martin Gregg, Finlay Doogan Morrison, James Floyd Scott
  • Publication number: 20090309194
    Abstract: This invention is directed to solving problems with a mesa type semiconductor device, which are deterioration in a withstand voltage and occurrence of a leakage current caused by reduced thickness of a second insulation film on an inner wall of a mesa groove corresponding to a PN junction, and offers a mesa type semiconductor device of high withstand voltage and high reliability and its manufacturing method. After the mesa groove is formed by dry-etching, wet-etching with an etching solution including hydrofluoric acid and nitric acid is further applied to a sidewall of the mesa groove to form an overhang made of the first insulation film above an upper portion of the mesa groove. The overhang serves as a barrier to prevent the second insulation film formed in the mesa groove and on the first insulation film around the mesa groove beyond an area of the overhang from flowing toward a bottom of the mesa groove due to an increased fluidity resulting from a subsequent thermal treatment.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 17, 2009
    Applicants: SANYO Electric Co., Ltd., SANYO Semiconductor Co., Ltd., SANYO Semiconductor Manufacturing Co., Ltd.
    Inventors: Katsuyuki SEKI, Akira Suzuki, Keita Odajima, Kikuo Okada, Koujiro Kameyama