Polymerizing In The Presence Of A Specified Material Other Than Monomer Patents (Class 526/89)
  • Patent number: 8648156
    Abstract: Polymerization process in a slurry loop reactor having a slurry loop reaction zone with a volume of at least 50 m3 and an internal diameter (D) of 50 cm or greater, a feed inlet for monomers and diluent, a catalyst inlet for polymerisation catalyst, and a discharge conduit for removal of polymer. Monomer, diluent and catalyst are passed into the reaction zone through their respective inlets where they form a slurry of polymer solids having a polymer solids concentration in the reaction zone of greater than 20 wt %. The space-time yield (STY) is greater than 100 kg/h/m3, and the catalyst inlet is an inlet pipe such that no part of the inlet pipe protrudes beyond the wall of the reaction zone and into the reaction zone by more than 1/10th of the diameter of the reaction zone at the point where the inlet pipe joins the reaction zone.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: February 11, 2014
    Assignee: Ineos Commercial Services UK Limited
    Inventors: Daniel Marissal, Stephen Kevin Lee
  • Patent number: 8642710
    Abstract: The invention relates to a process for preparing polyolefin in a loop reactor. The polymer is prepared by polymerizing olefin monomers in the presence of a catalyst to produce a polyolefin slurry while pumping said slurry through said loop reactor by means of a pump. The present process is characterized in that the catalyst is fed in the loop reactor at a distance to the pump. The invention allows production of the polymer with advantageous properties while leading to fewer blockages of the reactor.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: February 4, 2014
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Eric Damme, Louis Fouarge, Jerôme Bette, Alvaro Fernandez, Aurélien Vantomme, Renaud Oreins, Daniel Siraux
  • Patent number: 8623972
    Abstract: The present invention relates to styrene-butadiene copolymers (SBR) that are prepared using aqueous emulsion polymerization technology and are intended for the adhesive and sealing industry, being particularly useful in the preparation of contact adhesives and pressure-sensitive adhesives (PSA) and widely applicable in the footwear and furniture industries. The use of this kind of elastomer in processes for preparing adhesives, having an aqueous or solvent base, provides high cohesion to adhesive compositions without compromising or jeopardizing the adhesion. The present invention is also intended to protect the process for obtaining SBR copolymers, simultaneously comprising: aqueous emulsion polymerization at high temperatures, the use of a specific surfactant and the maintenance of the Mooney viscosity and the combined styrene content in the copolymer in high ranges.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: January 7, 2014
    Assignee: Lanxess Elastomeros Do Brasil S.A.
    Inventors: Marcus Tadeu Moura Moutinho, Manoel Remigio dos Santos, Rinaldo Farias Luz, Humberto Rocha Lovisi, Mauro Eduardo Costa Braz Pinto
  • Patent number: 8609757
    Abstract: The invention relates to water-in-water polymer dispersions containing cross-linked cationic polymers, methods for their preparation and their use. The water-in-water polymer dispersions are useful inter alia as flocculants, dewatering (drainage) aids and retention aids in papermaking.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Markus Broecher, Charlotta Kanto Oeqvist, Nathalie Sieverling, Christian Boekelo
  • Patent number: 8609792
    Abstract: The invention relates to A process for the polymerization of ethylene to produce a polyethylene resin in at least two slurry loop reactors connected to each other in series, the resin having a bimodal molecular weight distribution, a molecular weight distribution MWD of at least 7.0, an HLMI of from 1 to 100 g/10 min, and a density of from 0.935 to 0.960 g/cm3, wherein in one reactor 30 to 47 wt % based on the total weight of the polyethylene resin of a high molecular weight (HMW) polyethylene fraction is produced having an HL275 of from 0.05 to 1.8 g/10 min (the equivalent of HLMI of from 0.01 to 1.56 g/10 min), a density of from 0.925 to 0.942 g/cm3 and an MWD of at least 5.0, and in the other reactor a low molecular weight (LMW) polyethylene fraction is produced having an HLMI of from 10 to 1500 g/10 min and a density of from 0.960 to 0.975 g/cm3, in the presence of a Ziegler-Natta catalyst system.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: December 17, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Aurélien Vantomme, Daniel Siraux, Alain Van Sinoy, Jean-Léon Gielens
  • Patent number: 8609791
    Abstract: The present invention relates to a method for optimizing the sequential feeding of at least two ethylene polymerization catalysts to an ethylene polymerization reactor, comprising: transferring to a mixing vessel a first ethylene polymerization catalyst and a first diluent, decreasing the concentration of said first ethylene polymerization catalyst in said mixing vessel, transferring to said mixing vessel a second ethylene polymerization catalyst and a second diluent, progressively replacing said first ethylene polymerization catalyst by said second ethylene polymerization catalyst and said first diluent by said second diluent, increasing the concentration of said second ethylene polymerization catalyst in said mixing vessel, sequentially transferring said first ethylene polymerization catalyst and said second ethylene polymerization catalyst from said mixing vessel to an ethylene polymerization reactor.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: December 17, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Daan Dewachter, Martine Slawinski
  • Publication number: 20130324683
    Abstract: The present invention relates to apparatuses and processes for manufacturing polymers of thiophene, benzothiophene, and their alkylated derivatives. A process for manufacturing polymers that includes isolating a sulfur-containing heterocyclic hydrocarbon from cracked naphtha and reacting the sulfur-containing heterocyclic hydrocarbon with a super acid to produce a polymer.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Inventor: Abdullah R. Al-Malki
  • Patent number: 8598283
    Abstract: Methods for shutting down and restarting polymerization in a gas phase polymerization reactor are provided. The method can include introducing a polymerization neutralizer to the reactor in an amount sufficient to stop polymerization therein. The method can also include stopping recovery of a polymer product from the reactor and stopping introduction of a catalyst feed and a reactor feed to the reactor. The method can also include adjusting a pressure within the reactor from an operating pressure to an idling pressure. The method can also include adjusting a superficial velocity of a cycle fluid through the reactor from an operating superficial velocity to an idling superficial velocity. The method can also include maintaining the reactor in an idled state for a period of time.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: December 3, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Eric J. Markel, Robert O. Hagerty, Richard B. Pannell, Michael E. Sieloff, Jerome Holveck
  • Patent number: 8575256
    Abstract: A product and processes comprising urethane polymer and at least one copolymer from a hydrophobic ethylenically unsaturated C4-C30 olefins copolymerized with polar monomers such as acrylates. One process optionally utilizes an acid source to modify/catalyze the reactivity of the polar monomer and/or radically activated repeat unit from the polar monomer to promote incorporation of the ethylenically unsaturated olefin. Other processes vary depending on which polymer if formed and/or dispersed first. The hybrid copolymer shows excellent adhesion to a variety of polymeric and/or polar substrates such as polyolefins, acrylate coatings, wood, etc.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: November 5, 2013
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventors: Anthony D. Pajerski, Robert J. Pafford, IV, Naser Pourahmady, Libin Du, James D. Burrington, Stuart L. Bartley
  • Patent number: 8569433
    Abstract: A manufacturing system for producing polyolefin includes a polymerization reactor, a flash chamber, and a purge column. In certain embodiments, the purge column may receive a solids stream directly from the flash chamber. Further, the purge column may function as a feed tank for an extruder within an extrusion/loadout system. According to certain embodiments, the manufacturing system may be configured to consume less than 445 kilowatt-hours of energy per metric ton of polyolefin produced based on consumption of electricity, steam, and fuel gas.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 29, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Robert R. McElvain, John D. Hottovy, Ralph W. Romig, Donald W. Verser, David H. Burns, John H. Tait, Richard Peacock, James E. Hein, Scott E. Kufeld, Carl W. Fenderson, Anurag Gupta, Dale A. Zellers
  • Publication number: 20130274425
    Abstract: This invention relates to processes for increasing the viscosity of an oligomer composition including contacting the oligomer composition comprising one or more vinyl terminated oligomer with a supported mixed metal oxide catalyst; wherein the contacting causes the reaction of the vinyl terminated oligomers; and producing a product oligomer composition having a higher viscosity than the oligomer composition.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Inventors: Matthew W. Holtcamp, Donna J. Crowther, Caol P. Huff, Patrick Brant
  • Publication number: 20130274211
    Abstract: The invention relates to a biocompatible, non-biodegradable, and non-toxic polymer of formula (I), comprising of three monomeric units, selected from 1-Vinylpyrrolidne (VP), N-Isopropylactylamide (NIPAM), and ester of Maleic anhydride and Polyethylene glycol (MPEG), cross-linked with a bi-functional vinyl derivative, of high purity and substantially free of respective toxic monomeric contaminants, and a process for preparation thereof. The invention further relates to nanoparticulate pharmaceutical compositions of poorly water-soluble drugs or compounds comprising the polymer of the invention, which are safe, less-toxic and convenient for bedside administration to patients in need thereof. Furthermore, the invention relates to a highly selective method for preparation of nanoparticulate pharmaceutical compositions of poorly water-soluble drugs or compounds.
    Type: Application
    Filed: October 2, 2012
    Publication date: October 17, 2013
    Applicant: Fresenius Kabi Oncology Limited
    Inventors: Anand C. Burman, Rama Mukherjee, Dhiraj Khattar, Sanjoy Mullick, Manu Jaggi, Manoj Kumar Singh, Mukesh Kumar, Deepak Prusthy, Pawan Kumar Gupta, Rajendran Praveen, Shobhit Singh
  • Patent number: 8552134
    Abstract: A method of producing a water-absorbent resin of the present invention reduces amounts of a residual cross-linking agent and a residual surfactant, achieves high productivity, and improves physical properties of the resultant water-absorbent, such as absorption capacity, extractable polymer content, powder friction, and gel crushability. The method includes the steps of: polymerizing an aqueous monomer solution containing as a major component an acrylic acid monomer in the presence of a cross-linking agent; and drying the resultant polymer by heating, in which the cross-linking agent is a multifunctional (meth)acrylate cross-linking agent having polyethylene glycol structural units including a total of 6 to 200 ethylene oxide repeating units, and the aqueous monomer solution includes a mono(meth)acrylate compound having polyethylene glycol structural units in an amount of 0.1 to 30% by weight relative to an amount of the multifunctional (meth)acrylate cross-linking agent.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: October 8, 2013
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hirotama Fujimaru, Eri Goto, Kunihiko Ishizaki, Atsushi Motoyama
  • Patent number: 8524843
    Abstract: In an embodiment, the present invention provides a process for the liquid phase polymerization of isobutylene to manufacture highly reactive PIB oligomers having Mn under 1000, using a catalyst composition comprising a Friedel-Crafts catalyst and a complexing agent, in the presence of a chain transfer agent. The process advantageously uses short residence times for the isobutylene in the polymerization reaction zone as well as a chain transfer agent selected from: ?-DIB and ?-DIB and mixtures thereof.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: September 3, 2013
    Assignee: TPC Group LLC
    Inventors: Sohel K. Shaikh, Rex Lawson
  • Patent number: 8524260
    Abstract: The invention consists of a method for manufacturing an aqueous formulation containing at least one oil, and comprising the steps of mixing at least one associative polymer, one oil, and water, encapsulating the oil by increasing the pH to a value greater than 8, potentially precipitating the mixture by reducing the pH to a value less than 6, and potentially isolating the resulting particles by removing the water. The aqueous formulations, as with the aqueous dispersions, and the resulting solid particles constitute other objects of the invention.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: September 3, 2013
    Assignee: Coatex S.A.S.
    Inventors: Jean Moro, David Platel, Jean-Marc Suau, Olivier Guerret
  • Publication number: 20130217849
    Abstract: A composition comprising a mixture of fluoropolyether acids or salts having a number average value of about 800 to about 2500 g/mol. The amount of fluoropolyether acids or salt in the mixture having a molecular weight of not more than 500 g/mol is not more than 50 ppm by weight of the total amount of fluoropolyether acids or salts in the mixture. The amount of fluoropolyether acids or salts in the mixture having a molecular weight of 2500 g/mol or greater is not more than 40% by weight of the total amount of fluoropolyether acids or salts in the mixture. Preferably the fluoropolyether acids or salts comprise an anionic group selected from the group consisting of carboxylate, sulfonate, sulfonamide anion and phosphonate. Also disclosed is an aqueous dispersion polymerization process for fluoropolymer manufacture employing polymerization agent comprising the specified mixture of fluoropolyether acids or salts.
    Type: Application
    Filed: March 26, 2013
    Publication date: August 22, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I Du Pont De Nemours And Company
  • Patent number: 8513322
    Abstract: Polymeric beads and methods of making the polymeric beads are described. The polymeric beads are crosslinked hydrogels or dried hydrogels. The polymeric beads are formed from droplets of a precursor composition that are exposed to radiation. The droplets are totally surrounded by a gas phase. The precursor composition contains a polar solvent and a polymerizable material miscible in the polar solvent. The polymerizable material has an average number of ethylenically unsaturated groups per monomer molecule equal to at least 1.2.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 20, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Robin E. Wright, Mahfuza B. Ali, Jessica M. Buchholz, Louis C. Haddad, Linda K. M. Olson, Matthew T. Scholz, Narina Y. Stepanova, Michael J. Svarovsky, Richard L. Walter, Caroline M. Ylitalo, Diane R. Wolk, Yifan Zhang
  • Patent number: 8497337
    Abstract: A process for producing water-absorbing polymer particles, wherein at least one aliphatic aldehyde or reaction product thereof with an aliphatic alcohol, an aliphatic amine, ammonia, a hypophosphite or a phosphite is added.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: July 30, 2013
    Assignee: BASF SE
    Inventors: Norbert Herfert, Thomas Daniel
  • Patent number: 8492491
    Abstract: Provided herein are methods for the preparation of telechelic polyolefins via polymerization reaction with a terpene initiator.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: July 23, 2013
    Assignee: Chevron Oronite Company LLC
    Inventors: Casey D. Stokes, Young A. Chang
  • Patent number: 8492492
    Abstract: A method of treating a polymerization reactor effluent stream comprising recovering the reactor effluent stream from the polymerization reactor, flashing the reactor effluent stream to form a flash gas stream, separating the flash gas stream into a first top stream, a first bottom stream, and a side stream, wherein the side stream substantially comprises hexane, separating the first top stream into a second top stream and a second bottom stream, wherein the second bottom stream substantially comprises isobutane, and separating the second top stream into a third top stream and a third bottom stream; wherein the third top stream substantially comprises ethylene, and wherein the third bottom stream is substantially free of olefins.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Andrew J. Mills, Ralph W. Romig, Ji Xian X. Loh
  • Patent number: 8476391
    Abstract: The invention relates to a method for producing anionic water-in-water polymer dispersions containing at least one finely dispersed, water-soluble and/or water-swellable polymer A and a continuous aqueous phase. This phase has a partial quantity of at least one polymeric dispersing agent B in which monomers dispersed in this aqueous phase are subjected to a radical polymerization, and after the polymerization is completed, the reaction mixture is subsequently diluted with the remaining amount of dispersing agent B. The invention also relates to the polymer dispersions obtained according to the method and to their use, particularly in the paper industry.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: July 2, 2013
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Susanne Bellmann, Norbert Steiner, Michael Busch, Dev Steuck, Johann Schulte, Wolfgang Woebel
  • Patent number: 8476384
    Abstract: A polymerization process to copolymerize hydrophobic ethylenically unsaturated C4-C30. J olefins with polar monomers such as acrylates is described. The process utilizes an acid source to modify/catalyze the reactivity of the polar monomer and/or radically activated repeat unit from the polar monomer to promote incorporation of the ethylenically unsaturated olefin. The copolymer shows excellent adhesion to a variety of polymeric and/or polar substrates such as polyolefins, acrylate coatings, wood, etc.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: July 2, 2013
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventors: Stuart L. Bartley, James D. Burrington, Shui-Jen Raymond Hsu, Naser Pourahmady
  • Publication number: 20130165606
    Abstract: The invention relates to a process for preparing pressure-sensitive adhesives (PSAs) which have high molar masses in combination with a narrow molar mass distribution, and also to PSAs, especially polyacrylate-based PSAs, prepared accordingly. It has been found that, surprisingly, polymers with high molar masses and a narrow molar mass distribution, more particularly polyacrylates with high molar masses and a narrow molar mass distribution, can be prepared outstandingly in particular by means of RAFT processes in the presence of a diradical initiator which undergoes thermal cyclization to form a diradical, these polymers being suitable for use as high-shear-strength PSAs.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 27, 2013
    Applicant: TESA SE
    Inventor: TESA SE
  • Patent number: 8470946
    Abstract: Carbon nanotube (CNT) yarns and sheets having enhanced mechanical strength using infused and bonded nano-resins. A CNT yarn or sheet is surface-activated to produce open bonds in the CNT walls prior to resin infusion. The CNT yarn or sheet is infused with a low viscosity nano-resin that penetrates spaces between individual CNTs and is cured to cross-link and chemically bond to the CNT walls, either directly or through a functional molecule, to bond the individual CNTs or ropes to each other. The nano-resin can comprise dicyclopentadiene having an uncured viscosity near that of water. The cross-linking process involves ring-opening metathesis polymerization and catalysis of the nano-resin in combination with a functionalizing material such as norbornene, to enhance bonding between the carbon and nano-resin. The process increases load capability, tensile strength, and elastic modulus of the yarns and sheets, for use as a structural component in composite materials.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: June 25, 2013
    Assignee: The Regents of the University of California
    Inventor: Lawrence E. Carlson
  • Patent number: 8470205
    Abstract: An aqueous dispersion and a method for making an aqueous dispersion. The dispersion including at least one conductive polymer, such as a polythienothiophene, at least one hyperbranched polymer and optionally at least one colloid-forming polymeric acid and one non-fluorinated polymeric acid. Devices utilizing layers formed of the aqueous dispersions are also disclosed.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: June 25, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Shiying Zheng
  • Patent number: 8444950
    Abstract: A method for forming polymer carbon nanotube composites, the method comprising: contacting carbon nanotubes with ozone to functionalize the sidewalls of the carbon nanotubes with at least one oxygen moiety; and reacting the functionalized carbon nanotubes with at least one monomer or at least one polymer or copolymer to attach polymer chains to the sidewalls of the carbon nanotubes.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: May 21, 2013
    Assignees: Nanoledge Inc., Centre National de la Recherche Scientifique (CNRS)
    Inventors: Kai Schierholz, Patrice Lucas, Bernard Boutevin, François Ganachaud
  • Publication number: 20130102746
    Abstract: A conjugated polymer based on benzodithiophene and thienopyrazine with the following formula is provided, Wherein x+y=2, 0<y?1, n represents an integer between 1 and 100; R1, R2 represent C1 to C20 alkyl; R3, R4 represent H, C1 to C20 alkyl, C1 to C20 alkoxy or C1 to C20 aryl. The conjugated polymer have high mobility of the carriers and excellent electrochemical reduction properties, high photoelectric conversion efficiency and a broad prospect of application in the field of photoelectric, especially in the field of polymer solar cells, organic electroluminescent device, organic field-effect transistor, organic optical storage, organic nonlinear material, organic laser materials, and so on. Method for the conjugated polymer preparation is provided too.
    Type: Application
    Filed: June 26, 2010
    Publication date: April 25, 2013
    Inventors: Mingjie Zhou, Jie Huang, Erjian Xu
  • Patent number: 8420751
    Abstract: Provided is a method for performing a polymerization process in a stirred reactor, wherein a critical time window is determined by means of a monitor of at least one polymerization process parameter and an associated process window, and when a critical time window is present, an adaptation of process conditions is made in order to configure the polymerization process to conform to the process window.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 16, 2013
    Assignee: BASF SE
    Inventors: Ilshat Gubaydullin, Karl-Heinz Wassmer, Robert Rupaner, Jochen Kessler, Guillermo Arens, Gerald Wildburg, Christian Magin, Wolfgang Huemmer, Lambertus Manders, Rudolf Schuhmacher, Oliver Birkert
  • Publication number: 20130082220
    Abstract: Provided is a polymerizable composition including (meth)acrylate monomers having at least two sulfide (—S—) linkages in the monomer. The polymerizable compositions include a first (meth)acrylate monomer represented by the following Formula (I), where L1 is selected from a multivalent optionally substituted hydrocarbyl group optionally interrupted with at least one of —C(O)—, —S—, —O— and combinations thereof, and a divalent linking group represented by the following Formula (A). In Formula (A), Y is O or S. Also in Formula (I), L2 is independently for each n a divalent optionally substituted hydrocarbyl group optionally interrupted with at least one of —O— and —S—, R1 is independently selected for each n from hydrogen and methyl, and n is from 2 to 6. The polymerizable compositions also may include a polymerization moderator. Also provided are polymerizates including photochromic articles and optical elements prepared from such polymerizable compositions.
    Type: Application
    Filed: September 6, 2012
    Publication date: April 4, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Robert D. Herold, Nina V. Bojkova, Marvin J. Graham, Charles R. Hickenboth, Gregory J. McCollum, William H. Retsch, JR., Hongying Zhou
  • Publication number: 20130071930
    Abstract: Polyester compositions and functionalized polyester compositions are provided along with methods of making the compositions as well as methods of using the compositions, for example as a tissue engineering bioscaffold and as a drug-delivery vehicle.
    Type: Application
    Filed: January 25, 2011
    Publication date: March 21, 2013
    Applicant: University of Pittsburgh - of the Commonwealth System of Higher Education
    Inventors: Hunghao Chu, Yadong Wang, Zhengwei You
  • Patent number: 8399586
    Abstract: A process for feeding ethylene into a polymerization system includes providing a low-pressure ethylene stream, one or more low-pressure C3 to C20 monomer streams, an optional low-pressure inert solvent/diluent stream, and one or more reactors; metering the low-pressure ethylene stream, the one or more low-pressure C3 to C20 monomer streams, and the optional low-pressure inert solvent/diluent stream; blending the metered low-pressure ethylene stream, the metered one or more low-pressure C3 to C20 monomer streams, and the metered low-pressure optional inert solvent/diluent stream to form an ethylene-carrying low-pressure blended liquid feed stream; pressurizing the ethylene-carrying low-pressure blended liquid feed stream to the polymerization system pressure with one or more high-pressure pumps to thrm an ethylene-carrying high-pressure blended reactor feed stream; and feeding the ethylene-carrying high-pressure blended reactor feed stream to the one or more reactors.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, James Richardson Lattner, Gary D. Mohr
  • Publication number: 20130066027
    Abstract: The invention is directed to a process for the gas phase polymerisation of one or more olefin monomers in a fluidised bed reactor in a dry mode or in a (super) condensed mode with a gas stream comprising an inert gas characterised in that the inert gas comprises a mixture of inert components: (1) nitrogen; (2) a gas heat capacity increasing agent (3) a sorption promoting agent and (4) a polymer swelling agent. The inert gas may comprise (1) 5-60% by mol nitrogen (2) 10-90% by mol ethane (3) 1-50% by mol % n-butane and (4) 0.1-10% by mol % n-pentane or iso-pentane.
    Type: Application
    Filed: May 12, 2011
    Publication date: March 14, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Yahya Banat, Fahad Al-Obaidi, Abdul Kader Malek
  • Publication number: 20130053522
    Abstract: In one aspect, a process for the preparation of a superabsorbent polymer is described herein. In some embodiments, the process comprises (I) preparing acrylic acid, wherein the process comprises (a1) provision of a fluid F1 having a composition comprising from about 5 to about 20 wt. % of hydroxypropionic acid, salts thereof, or mixtures thereof; from about 0.1 to about 5 wt. % of inorganic salts; from about 0.1 to about 30 wt. % of organic compounds which differ from hydroxypropionic acid; from 0 to about 50 wt. % of solids; and from about 20 to about 90 wt. % of water; (a2) dehydration of said hydroxypropionic acid to give a fluid F2 containing acrylic acid; and (a3) purification of said fluid F2 to give a purified acrylic acid phase comprising acrylic acid having a purity of at least 70 wt. %; and (II) polymerizing the acrylic acid of (I) to form a superabsorbent polymer.
    Type: Application
    Filed: September 28, 2012
    Publication date: February 28, 2013
    Inventors: Franz-Felix Kuppinger, Axel Hengstermann, Guido Stochniol, Günther Bub, Jürgen Mosler, Andreas Sabbagh
  • Patent number: 8383739
    Abstract: Systems and methods for monitoring a polymerization reactor are provided. The method can include estimating an acoustic condition of a polymer produced in a reactor. The method can also include estimating a stickiness control parameter of the polymer produced in the reactor. The method can further include pairing the acoustic condition with the stickiness control parameter to provide a paired acoustic condition and stickiness control parameter.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: February 26, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Michael E. Muhle, Richard B. Pannell, Eric J. Markel, Robert O. Hagerty
  • Patent number: 8383747
    Abstract: A method for producing a water absorbent resin by (i) polymerizing a monomer including an unsaturated monomer containing a carboxyl group, in the presence of an internal cross-linking agent (A) having two or more radical polymerizable unsaturated groups and in the presence of a non-polymeric internal cross-linking agent (B) having two or more functional groups each allowing formation of an ester bond or an amide bond by reacting with a carboxyl group, while crushing a cross-linked polymer hydrogel; and (ii) drying the cross-linked polymer hydrogel of step (i), wherein: an amount of the internal cross-linking agent (A) is 0.01 mol % or more and 0.2 mol % or less relative to an amount of the unsaturated monomer containing a carboxyl group, and a molar ratio (B)/(A) of the internal cross-linking agent (A) and the non-polymeric internal cross-linking agent (B) is 0.01 or more and 1.8 or less.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: February 26, 2013
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazushi Torii, Taishi Kobayashi
  • Patent number: 8383746
    Abstract: According to the present invention, the manufacturing method for the water absorbing resin involves the step of polymerizing a water-soluble unsaturated monomer, 0.06 of 5 mol % of which is composed of an internal crosslinking agent; and the step of drying a water-containing gel which has a thermally decomposing radical initiator content index of 40 to 100 at 100 to 250° C. The water absorbing resin of the present invention contains a water-soluble unsaturated monomer as a repeat unit for a major chain, 90 mol % of the monomer being composed of an acrylic acid and/or salt thereof, the resin having an internal crosslinking structure and exhibiting a weight-average molecular weight Mw of 360,000 to 1,000,000 daltons and an intrinsic viscosity IV of 2.1 to 6.0 dL/g where the weight-average molecular weight Mw and the intrinsic viscosity IV are measured after treatment under set 2 of hydrolysis conditions.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 26, 2013
    Assignee: Nippon Shokubai Co., Ltd
    Inventors: Kazushi Torii, Hirofumi Shibata
  • Patent number: 8372926
    Abstract: Novel fatty acid monomers and methods for their synthesis are provided for use in polymerization reactions. Fatty acid monomers are employed as reactive diluents in the polymerization of vinyl esters and polyesters for one or more purposes selected from improving the fracture resistance, lowering the processing viscosity and reducing the volatile organic compounds present in the polymerization mixture.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 12, 2013
    Assignees: Drexel University, The United States of America, as represented by the Secretary of the Army
    Inventors: Guiseppe Raffaello Palmese, John Joseph LaScala, James Matthew Sands
  • Publication number: 20130035461
    Abstract: Provided is a fluorine- and epoxy group-containing copolymer with excellent workability at room temperature, high water-repellency, and excellent characteristics as a water vapor barrier. Also provided is an efficient method for producing said copolymer. The fluorine and epoxy group-containing copolymer is characterized by containing at least a monomer unit represented by general formula (1): {Therein, R1-R10 each independently represent an alkyl group having 1-3 carbon atoms or a hydrogen atom, R11 is a hydrogen atom, methyl group, or phenyl group, and R5 or R6 can be linked with R7 or R8 to form a ring.} and a monomer unit represented by general formula (2): {Therein, R12 and R13 each independently represent a hydrogen atom or a fluorine atom; R14 represents a hydrogen atom, fluorine atom, methyl group or trifluoromethyl group, and R15 represents a flourine atom or perfluoro group having at most 12 carbon atoms.
    Type: Application
    Filed: May 19, 2011
    Publication date: February 7, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Hiroshi Uchida, Masanao Hara
  • Patent number: 8367785
    Abstract: Method for controlling a process for polymerising at least one olefin in a reaction zone, the process including in the reaction zone a reaction mixture and polymer particles, the reaction mixture containing a principal olefin and at least one further reagent. The method involves using the ratio of at least one further reagent to principal olefin in the polymer particles in the reaction zone or in the amorphous phase of the polymer particles.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: February 5, 2013
    Assignee: Ineos Europe Limited
    Inventors: Jean-Louis Chamayou, Pierre Sere Peyrigain
  • Patent number: 8367788
    Abstract: A process for catalytically preparing (meth)acrylic esters of N-hydroxyalkylated lactams and to the use thereof.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: February 5, 2013
    Assignee: BASF SE
    Inventors: Hermann Bergmann, Frank Hoefer, Maximilian Angel
  • Patent number: 8362161
    Abstract: A method of treating a polymerization reactor effluent stream comprising recovering the reactor effluent stream from the polymerization reactor, flashing the reactor effluent stream to form a flash gas stream, separating the flash gas stream into a first top stream, a first bottom stream, and a side stream, wherein the side stream substantially comprises hexane, separating the first top stream into a second top stream and a second bottom stream, wherein the second bottom stream substantially comprises isobutane, and separating the second top stream into a third top stream and a third bottom stream; wherein the third top stream substantially comprises ethylene, and wherein the third bottom stream is substantially free of olefins.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 29, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Andrew J. Mills, Ralph W. Romig, Ji Xian X. Loh
  • Patent number: 8349264
    Abstract: Methods and systems for preparing catalyst, such as chromium catalysts, are provided. The valence of at least a portion of the catalyst sent to an activator is changed from Cr(III) to Cr(VI). The catalyst is prepared or activated continuously using a fluidization bed catalyst activator.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: January 8, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Ted H. Cymbaluk, Charles K. Newsome, Charles R. Nease, H. Kenneth Staffin, Thomas R. Parr
  • Patent number: 8338537
    Abstract: The invention relates to surface modifying macromolecules (SMMs) having high degradation temperatures and their use in the manufacture of articles made from base polymers which require high temperature processing. The surface modifier is admixed with the base polymer to impart alcohol and water repellency properties.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: December 25, 2012
    Assignee: Interface Biologics Inc.
    Inventors: Sanjoy Mullick, Richard Witmeyer, Paul Santerre, Weilun Chang
  • Publication number: 20120322958
    Abstract: A mixed magnesium dialkoxide particulate obtained by direct solid-liquid reaction between particulate magnesium metal with a mean particle size of 50 ?m to 500 ?m and two or more alcohols including ethyl alcohol and at least one C3-6 alcohol, and comprising magnesium diethoxide, wherein the content of alkoxides other than ethoxide is 2.5 to 15 mol % of the total, the mean particle size (D50) is 20 to 100 ?m and the bulk density is at least 0.4 g/ml. The mixed magnesium dialkoxide is for use as a catalyst component for polymerization of olefins such as propylene, exhibits high breaking strength, and when used for preparation of a polymerization catalyst, high polymerization activity is exhibited resulting in a high catalyst product yield.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 20, 2012
    Inventors: Akihiko Yamanaka, Hiroshi Kumai
  • Publication number: 20120316304
    Abstract: In an embodiment, the present invention provides a process for the liquid phase polymerization of isobutylene to manufacture highly reactive PIB oligomers having Mn under 1000, using a catalyst composition comprising a Friedel-Crafts catalyst and a complexing agent, in the presence of a chain transfer agent. The process advantageously uses short residence times for the isobutylene in the polymerization reaction zone as well as a chain transfer agent selected from: ?-DIB and ?-DIB and mixtures thereof.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 13, 2012
    Inventors: Sohel K. SHAIKH, Rex Lawson
  • Patent number: 8324329
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of (a) polymerizing monomer in the presence of a coordination catalyst to form a polymer, (b) inhibiting said step of polymerizing with a Lewis base, and (c) reacting the polymer with a functionalizing agent.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: December 4, 2012
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Kevin M. McCauley, Timothy L. Tartamella, Mark W. Smale, Randhir Shetty
  • Publication number: 20120291793
    Abstract: The invention provides a method of isolating certain target compounds from tobacco, tobacco materials or smoke generated by a smoking article. The method can be used to remove undesirable compounds from tobacco, tobacco materials, or tobacco smoke. The method can also be used to remove flavor compounds from tobacco or tobacco materials, which can then be used as flavor components for tobacco material used in smoking articles and smokeless tobacco compositions.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Inventors: Crystal Dawn Hege Byrd, Anthony Richard Gerardi
  • Patent number: 8314192
    Abstract: The present invention relates to a process for producing an interpenetrating polymer network structure, which comprises the steps of impregnating a polymer molding with a radical polymerizable composition containing an ethylenically unsaturated compound and a radical polymerization initiator; and polymerizing the ethylenically unsaturated compound in a swollen state of the polymer molding impregnated with the radical polymerizable composition; wherein a chain transfer agent and/or a radical polymerization inhibitor are added to the radical polymerizable composition and/or the polymer molding before impregnating the polymer molding with the radical polymerizable composition. According to the present invention, a highly uniform interpenetrating polymer network structure can be obtained.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: November 20, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Norikazu Tabata, Kazuhiko Hashisaka, Masahiro Sugimura, Takuo Sakamoto, Masaki Ue, Hiroyuki Nakayama, Seiji Fukuda
  • Patent number: 8303899
    Abstract: A manufacturing system for producing polyolefin includes a polymerization reactor, a flash chamber, and a purge column. In certain embodiments, the purge column may receive a solids stream directly from the flash chamber. Further, the purge column may function as a feed tank for an extruder within an extrusion/loadout system. According to certain embodiments, the manufacturing system may be configured to consume less than 445 kilowatt-hours of energy per metric ton of polyolefin produced based on consumption of electricity, steam, and fuel gas.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 6, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Robert R. McElvain, John D. Hottovy, Ralph W. Romig, Donald W. Verser, David H. Burns, John H. Tait, Richard Peacock, James E. Hein, Scott E. Kufeld, Carl W. Fenderson, Anurag Gupta, Dale A. Zellers, Penny A. Zellers, legal representative
  • Publication number: 20120277386
    Abstract: A method comprising contacting an olefin in the presence of a catalyst and a melt index modifier (MIM) under conditions suitable to form a polyolefin and recovering the polyolefin, wherein the polyolefin melt index is increased by at least about 25%, wherein the normalized catalyst activity is decreased by less than about 10%, and wherein the MIM is characterized by the general formula R1—HC?CH—R2 or R3R4C?CH2 where R1, R2, R3, R4 are each selected from the group consisting of a non-aromatic organyl group.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Elizabeth A. BENHAM, Charles R. NEASE, Max P. MCDANIEL