With Semiconductor Substrate Only (epo) Patents (Class 257/E27.01)

  • Publication number: 20120313691
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Publication number: 20120305941
    Abstract: A well region formation method and a semiconductor base in the field of semiconductor technology are provided. A method comprises: forming isolation regions in a semiconductor substrate to isolate active regions; selecting at least one of the active regions, and forming a first well region in the selected active region; forming a mask to cover the selected active region, and etching the rest of the active regions, so as to form grooves; and growing a semiconductor material by epitaxy to till the grooves. Another method comprises: forming isolation regions in a semiconductor substrate for isolating active regions; forming well regions in the active regions; etching the active regions to form grooves, such that the grooves have a depth less than or equal to a depth of the well regions; and growing a semiconductor material by epitaxy to till the grooves.
    Type: Application
    Filed: July 26, 2011
    Publication date: December 6, 2012
    Inventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
  • Patent number: 8324023
    Abstract: An apparatus and a method for producing three-dimensional integrated circuit packages. In one embodiment, an electronics package with at least two dice are stacked one atop another is disclosed. A top die is of smaller size compared with a bottom die such that after a die attach operation, wire-bond pads of the bottom die will be exposed for a subsequent wire bonding operation. The bottom die contains contact pads on the front side that couple with one or more passive components fabricated on the back side of the top die to complete the circuit. In another exemplary embodiment, a method to form one or more three-dimensional passive components in a stacked-die package is disclosed wherein partial inductor elements are fabricated on the front side of the bottom die and the back side of the top die. The top and bottom elements are coupled together completing the passive component.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: December 4, 2012
    Assignee: Atmel Corporation
    Inventor: Ken Lam
  • Publication number: 20120299063
    Abstract: A method of manufacturing a semiconductor memory device according to the embodiment includes: forming a first stacked-structure; forming a first stripe part and a first hook part at the first stacked-structure; forming a second stacked-structure on the first stacked-structure; forming a second stripe part and a second hook part at the second stacked-structure; repeating the above-described four steps for a certain number of times; and forming a contact plug contacting the first or second hook parts. The etching is conducted to remove the first stacked-structure in a region at which the second hook part is to be formed in the second stacked-structure higher than the first stacked-structure by one layer. The etching is conducted to remove the second stacked-structure in a region at which the first hook part is to be formed in the first stacked-structure higher than the second stacked-structure by one layer.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 29, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Yasuyuki BABA
  • Publication number: 20120299150
    Abstract: A power semiconductor module includes a power semiconductor die, a metal substrate, a patterned metallization layer, a plurality of padless electrical connections, a plurality of vias and an inductor. The power semiconductor die has a top surface, an opposing bottom surface and a plurality of sides extending between the top and bottom surfaces. The metal substrate is attached to the bottom surface of the die. The patterned metallization layer is disposed above the top surface of the die. The plurality of padless electrical connections are at the top surface of the die and connect the patterned metallization layer to the die. The plurality of vias are disposed adjacent one or more of the sides of the die and electrically connected to the patterned metallization layer at a first end of the plurality of vias and to the metal substrate at a second end of the plurality of vias.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicants: PRIMARION, INC., INFINEON TECHNOLOGIES AG
    Inventors: Benjamin Tang, Laura Carpenter, Kenneth Ostrom, Frank Daeche
  • Patent number: 8319204
    Abstract: A recording layer 52 made of a chalcogenide material which stores a high-resistance state of a high electrical resistance value and a low-resistance state of a low electrical resistance value is used as a memory element RM in a memory cell region, and it is formed so that a concentration of Ga or In of a first layer 52a positioned on a lower electrode TP side of the recording layer 52 is higher than the corresponding concentration of a second layer 52b positioned on an upper electrode 53 side. For example, the recording layer is formed so that a content of Ga or In of the second layer is 5 atomic % or more smaller than that of the first layer. Also, a circuit which can reverse the voltage polarity between the upper electrode and the lower electrode in a set operation and a reset operation is provided.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: November 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Motoyasu Terao, Satoru Hanzawa, Takahiro Morikawa, Kenzo Kurotsuchi, Riichiro Takemura, Norikatsu Takaura, Nozomu Matsuzaki
  • Publication number: 20120261799
    Abstract: A technology which allows a reduction in the thermal resistance of a semiconductor device used in a radio communication device, and the miniaturization thereof is provided. For example, the semiconductor device can include a plurality of unit transistors Q, transistor formation regions 3a, 3b, and 3e each having a first number (e.g., seven) of the unit transistors Q, and transistor formation regions 3c and 3d each having a second number (e.g., four) of the unit transistors Q. The transistor formation regions 3c and 3d are located between the transistor formation regions 3a, 3b, 3e, and 3f, and the first number is larger than the second number.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Inventors: Satoshi SASAKI, Yasunari UMEMOTO, Yasuo OSONE, Tsutomu KOBORI, Chushiro KUSANO, Isao OHBU, Kenji SASAKI
  • Publication number: 20120261831
    Abstract: According to one embodiment, an integrated circuit device includes a plurality of interconnects and a contact via. The plurality of interconnects are arranged parallel to each other. The contact via is connected to the each of the interconnects. A protrusion is formed at a portion of each of the interconnects connected to the contact via to protrude in a direction of the arrangement. A recess is formed at a portion of the each of the interconnects separated from the portion having the protrusion to recede in the direction. The protrusion formed on one interconnect of two mutually-adjacent interconnects among the plurality of interconnects is opposed to the recess formed in one other interconnect of the two mutually-adjacent interconnects. The portion having the recess is separated from portions on two sides thereof and is separated also from the portion having the protrusion.
    Type: Application
    Filed: September 20, 2011
    Publication date: October 18, 2012
    Inventor: Gaku SUDO
  • Publication number: 20120243358
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate including a device region which is isolated by a device isolation film, a first conductive layer provided on the device region via a gate insulation film, an inter-gate insulation film provided on the first conductive layer and including an opening on the first conductive layer, a second conductive layer disposed over the device region and the device isolation film via the inter-gate insulation film, a third conductive layer provided on the first conductive layer, isolated from the second conductive layer by a peripheral trench, and connected to the first conductive layer via the opening of the inter-gate insulation film, and source/drain diffusion layers provided, spaced apart, in the device region in a manner to sandwich the first conductive layer.
    Type: Application
    Filed: September 18, 2011
    Publication date: September 27, 2012
    Inventors: Kikuko SUGIMAE, Hiroyuki Kutsukake
  • Publication number: 20120235242
    Abstract: A method of fabricating gate level electrodes and interconnects in an integrated circuit, and an integrated circuit so fabricated, with improved process margin for the gate level interconnects of a width near the critical dimension. Off-axis illumination, as used in the photolithography of deep sub-micron critical dimension, is facilitated by the patterned features having a preferred orientation in a common direction, with a pitch constrained to within a relatively narrow range. Interconnects in that same gate level, for example “field poly” interconnects, that run parallel to an array of gate elements are placed within a specified distance range from the ends of the gate elements, or at a distance sufficient to allow sub-resolution assist features.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: James Walter Blatchford, JR., Yong Seok Choi
  • Publication number: 20120223763
    Abstract: Provided is a semiconductor device which avoids an adverse effect of high temperatures due to a switching element and in which a circuit to prevent false firing is arranged on the same substrate as the switching element. An N-channel type MOSFET 10 and a JFET 30 of an N-channel type containing a semiconductor material of silicon carbide are individually arranged in proximity on conductive patterns 51, 52 on a substrate 5, and a gate electrode 13 of the MOSFET 10 and a drain electrode 31 of the JFET 30 are connected by a lead 61. When an external drive signal for on/off control of MOSFET 10 propagates between source electrode 32 and drain electrode 31 of JFET 30, the channel resistance of JFET 30 is changed to a large/small value according to a low/high level of gate voltage between source electrode 32 and gate electrode 33, whereby a leading edge of a switching waveform between drain electrode 11 and source electrode 12 of MOSFET 10 comes to have a gentler slope than a trailing edge thereof.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 6, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Kenichi Sawada
  • Publication number: 20120211767
    Abstract: The present power converter includes a power conversion semiconductor device, an electrode connection conductor which electrically connects multiple electrodes having the same potential, and also has a generally flat upper surface for electrically connecting to an exterior portion, and a sealing material provided so as to cover the power conversion semiconductor device, and also to expose the generally flat upper surface of the electrode connection conductor.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 23, 2012
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasuhiko KAWANAMI, Masato HIGUCHI, Akira SASAKI, Akira SOMA, Tasuku ISOBE, Tetsuya ITO
  • Publication number: 20120205720
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a tantalum silicon oxynitride film on a substrate for use in a variety of electronic systems. The tantalum silicon oxynitride film may be structured as one or more monolayers. The tantalum silicon oxynitride film may be formed using a monolayer or partial monolayer sequencing process. Metal electrodes may be disposed on a dielectric containing a tantalum silicon oxynitride film.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 16, 2012
    Inventors: Leonard Forbes, Kie Y. Ahn, Arup Bhattacharyya
  • Publication number: 20120199951
    Abstract: An integrated circuit package that comprises a lead frame 105, an integrated circuit located on the lead frame and a shunt resistor coupled to the integrated circuit. The shunt resistor has a lower temperature coefficient of resistance than the lead frame, and the lead frame has a lower resistivity than the shunt resistor. The shunt resistor has a low-resistance coupling to external leads of the lead frame, or, the shunt resistor has its own integrated external leads.
    Type: Application
    Filed: March 5, 2012
    Publication date: August 9, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ubol Udompanyavit, Steven Kummerl
  • Publication number: 20120175726
    Abstract: According to one embodiment, a semiconductor device comprises a circuit portion, wells, and dummy wells. A circuit portion is formed on an upper surface of a semiconductor substrate of a first conductivity type. The wells are of a second conductivity type different from the first conductivity type. Each of wells is formed in the semiconductor substrate on an upper surface side, constitutes the circuit portion, and functions as an element. The dummy wells are of the second conductivity type. Each of the dummy wells is formed in the semiconductor substrate on the upper surface side, does not constitute the circuit portion, and does not function as an element.
    Type: Application
    Filed: October 26, 2011
    Publication date: July 12, 2012
    Inventor: Jin Kashiwagi
  • Publication number: 20120175725
    Abstract: A semiconductor storage device according to an embodiment includes a memory cell array provided on a semiconductor substrate and comprising a plurality of memory cells configured to store data therein, and a peripheral circuit part provided on the semiconductor substrate and configured to control the memory cell array. An element isolation part is provided between active areas where the memory cells and the peripheral circuit part are formed. A sidewall film is provided on a side surface of the active area in the peripheral circuit part.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 12, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hideto TAKEKIDA
  • Publication number: 20120153429
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P? layer, and the P? layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P? layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P? layer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 21, 2012
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. FAROOQ, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Sampath Purushothaman, Roy R. Yu
  • Publication number: 20120132984
    Abstract: A contact plug 40 electrically connected to an impurity diffusion region between sidewalls of an adjacent pair of memory cells 1 is provided to pass through an interlayer dielectric film 18. A side wall of a contact hole 41 is covered with a sealing film 42 denser than the interlayer dielectric film 18. The contact plug 40 includes a barrier metal film 43 formed to cover a surface of the sealing film 42 and a bottom surface portion of the contact hole 41 and a metal plug 44 embedded in the contact hole 41 in a state surrounded by the barrier metal film 43.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 31, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Michihiko Mifuji, Yuichi Nakao, Toshikazu Mizukoshi, Bungo Tanaka, Taku Shibaguchi, Gentaro Morikawa
  • Publication number: 20120126348
    Abstract: Systems and methods for a micro-electromechanical system (MEMS) apparatus are provided. In one embodiment, a system comprises a first double chip that includes a first base layer; a first device layer bonded to the first base layer, the first device layer comprising a first set of MEMS devices; and a first top layer bonded to the first device layer, wherein the first set of MEMS devices is hermetically isolated. The system also comprises a second double chip that includes a second base layer; a second device layer bonded to the second base layer, the second device layer comprising a second set of MEMS devices; and a second top layer bonded to the second device layer, wherein the second set of MEMS devices is hermetically isolated, wherein a first top surface of the first top layer is bonded to a second top surface of the second top layer.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 24, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Robert D. Horning
  • Publication number: 20120126299
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate; a gate insulating film formed above the semiconductor substrate; a charge storage layer formed above the gate insulating film; a multilayered interelectrode insulating film formed in a first region above an upper surface portion of the element isolation insulating film, a second region above a sidewall portion of the charge storage layer and a third region above an upper surface portion of the charge storage layer, the interelectrode insulating film including a stack of an upper silicon oxide film, a middle silicon nitride film, and a lower silicon oxide film; a control gate electrode formed above the interelectrode insulating film; wherein the middle silicon nitride film is thinner in the third region than in the second region and the upper silicon oxide film is thicker in the third region than in the second region.
    Type: Application
    Filed: September 20, 2011
    Publication date: May 24, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuhiro MATSUO, Masayuki Tanaka, Hirofumi Iikawa
  • Publication number: 20120126244
    Abstract: The invention provides a STI structure and a method for manufacturing the same. The STI includes a semiconductor substrate; a first trench formed on the upper surface of the semiconductor substrate and filled with an epitaxial layer, wherein the upper surface of the epitaxial layer is higher than that of the semiconductor substrate; and a second trench formed on the epitaxial layer and filled with a first dielectric layer, wherein the upper surface of the first dielectric layer is flush with that of the epitaxial layer, and the width of the second trench is smaller than that of the first trench. The invention reduces the influences of divots on performance of the semiconductor device.
    Type: Application
    Filed: January 27, 2011
    Publication date: May 24, 2012
    Inventors: Huicai Zhong, Haizhou Yin, Qingqing Liang, Huilong Zhu
  • Publication number: 20120112288
    Abstract: The present invention provides an isolation structure for a semiconductor substrate and a method for manufacturing the same, as well as a semiconductor device having the structure. The present invention relates to the field of semiconductor manufacture. The isolation structure comprises: a trench embedded in a semiconductor substrate; an oxide layer covering the bottom and sidewalls of the trench, and isolation material in the trench and on the oxide layer, wherein a portion of the oxide layer on an upper portion of the sidewalls of the trench comprises lanthanum-rich oxide. By the trench isolation structure according to the present invention, metal lanthanum in the lanthanum-rich oxide can diffuse into corners of the oxide layer of the gate stack, thus alleviating the impact of the narrow channel effect and making the threshold voltage adjustable.
    Type: Application
    Filed: March 2, 2011
    Publication date: May 10, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu, Huicai Zhong
  • Publication number: 20120104541
    Abstract: The present disclosure provides a semiconductor device, including a substrate having a seal ring region and a circuit region, a seal ring structure disposed over the seal ring region, a first passivation layer disposed over the seal ring structure, the first passivation layer having a first passivation layer aperture over the seal ring structure, and a metal pad disposed over the first passivation layer, the metal pad coupled to the seal ring structure through the first passivation layer aperture and having a metal pad aperture above the first passivation layer aperture. The device further includes a second passivation layer disposed over the metal pad, the second passivation layer having a second passivation layer aperture above the metal pad aperture, and a polyimide layer disposed over the second passivation layer, the polyimide layer filling the second passivation layer aperture to form a polyimide root at an exterior tapered edge of the polyimide layer.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Tzu-Wei Chiu
  • Publication number: 20120086045
    Abstract: A vertical semiconductor device (e.g. a vertical power device, an IGBT device, a vertical bipolar transistor, a UMOS device or a GTO thyristor) is formed with an active semiconductor region, within which a plurality of semiconductor structures have been fabricated to form an active device, and below which at least a portion of a substrate material has been removed to isolate the active device, to expose at least one of the semiconductor structures for bottom side electrical connection and to enhance thermal dissipation. At least one of the semiconductor structures is preferably contacted by an electrode at the bottom side of the active semiconductor region.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 12, 2012
    Applicant: IO SEMICONDUCTOR, INC.
    Inventors: Stuart B. Molin, Michael A. Stuber
  • Patent number: 8129796
    Abstract: There is provided a high-integrated complementary metal-oxide semiconductor static random-access memory including an inverter.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 6, 2012
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Publication number: 20120038019
    Abstract: A method and structure for uncovering captive devices in a bonded wafer assembly comprising a top wafer and a bottom wafer. One embodiment method includes forming a plurality of cuts in the top wafer and removing a segment of the top wafer defined by the plurality of cuts. The bottom wafer remains unsingulated after the removal of the segment.
    Type: Application
    Filed: September 25, 2008
    Publication date: February 16, 2012
    Inventors: Clayton Lee Stevenson, Jason C. Green, Daryl Ross Koehl, Buu Quoc Diep
  • Publication number: 20120032294
    Abstract: A semiconductor device comprising: a first single crystal silicon layer comprising first transistors, first alignment mark, and at least one metal layer overlying said first single crystal silicon layer, wherein said at least one metal layer comprises copper or aluminum more than other materials; a second layer overlying said at least one metal layer, said second layer comprising second transistors, second alignment mark, and a through via through said second layer, wherein said through via is a part of a connection path between said first transistors and said second transistors, wherein alignment of said through via is based on said first alignment mark and said second alignment mark and effected by a distance between said first alignment mark and said second alignment mark.
    Type: Application
    Filed: June 16, 2011
    Publication date: February 9, 2012
    Applicant: MonolithlC 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar
  • Publication number: 20120001269
    Abstract: According to one embodiment, a semiconductor device including a field-effect transistor, and a resistance element connected between a gate electrode of the field effect transistor and a connection point connected between a back gate electrode of the field effect transistor and one of source-drain regions of the field effect transistor, a voltage being applied between the other of the source-drain regions and the gate electrode.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 5, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yuki NAKAMURA, Takehito IKIMURA
  • Publication number: 20110266651
    Abstract: The invention relates to a method for manufacturing components on a mixed substrate. It comprises the following steps: —providing a substrate of the semiconductor-on-insulator (SeOI) type comprising a buried oxide layer between a supporting substrate and a thin layer, —forming in this substrate a plurality of trenches opening out at the free surface of the thin layer and extending over a depth such that it passes through the thin layer and the buried oxide layer, these primary trenches delimiting at least one island of the SeOI substrate, —forming a mask inside the primary trenches and as a layer covering the areas of the free surface of the thin layer located outside the islands, —proceeding with heat treatment for dissolving the buried oxide layer present at the island, so as to reduce the thickness thereof.
    Type: Application
    Filed: February 11, 2010
    Publication date: November 3, 2011
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Gregory Riou, Didier Landru
  • Publication number: 20110254132
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a substrate that spans in an X-direction and a Y-direction that is orthogonal to the X-direction. The semiconductor device includes an interconnect structure formed over the substrate in a Z-direction that is orthogonal to both the X-direction and the Y-direction. The interconnect structure includes a plurality of metal lines interconnected together in the Z-direction by a plurality of vias. The interconnect structure contains a capacitor that includes an anode component and a cathode component. The anode component includes an array of elongate anode stack elements extending in the Z-direction. The cathode component includes an array of elongate cathode stack elements extending in the Z-direction. The array of anode stack elements are interdigitated with the array of cathode stack elements in both the X direction and the Y direction.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Hsiu-Ying Cho
  • Publication number: 20110254119
    Abstract: A method of manufacturing semiconductor devices includes forming a tunnel insulating layer, a conductive layer for a floating gate, and a hard mask layer on a semiconductor substrate, forming a first trench in the semiconductor substrate by partially etching the hard mask layer, the conductive layer for the floating gate, the tunnel insulating layer, and the semiconductor substrate, forming a first ion implantation region having a first impurity concentration into the semiconductor substrate of inner walls of the first trench by performing a first ion implantation process, forming a second trench extending from the first trench by etching the semiconductor substrate of a bottom of the first trench, and forming a second ion implantation region having a second impurity concentration lower than the first impurity concentration into the semiconductor substrate of inner walls of the second trench by performing a second ion implantation process, wherein a depth of the first trench is shallower than that of a juncti
    Type: Application
    Filed: May 26, 2011
    Publication date: October 20, 2011
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Ji H. Seo
  • Publication number: 20110233726
    Abstract: A semiconductor device includes conductive pillars disposed vertically over a seed layer, a conformal insulating layer formed over the conductive pillars, and a conformal conductive layer formed over the conformal insulating layer. A first conductive pillar, the conformal insulating layer, and the conformal conductive layer constitute a vertically oriented integrated capacitor. The semiconductor device further includes a semiconductor die or component mounted over the seed layer, an encapsulant deposited over the semiconductor die or component and around the conformal conductive layer, and a first interconnect structure formed over a first side of the encapsulant. The first interconnect structure is electrically connected to a second conductive pillar, and includes an integrated passive device. The semiconductor device further includes a second interconnect structure formed over a second side of the encapsulant opposite the first side of the encapsulant.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Rui Huang, Heap Hoe Kuan, Yaojian Lin, Seng Guan Chow
  • Publication number: 20110233621
    Abstract: The present disclosure provides a method of bonding a plurality of substrates. In an embodiment, a first substrate includes a first bonding layer. The second substrate includes a second bonding layer. The first bonding layer includes silicon; the second bonding layer includes aluminum. The first substrate and the second substrate are bonded forming a bond region having an interface between the first bonding layer and the second bonding layer. A device having a bonding region between substrates is also provided. The bonding region includes an interface between a layer including silicon and a layer including aluminum.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Martin Liu, Richard Chu, Hung-Hua Lin, H. T. Huang, Jung-Huei Peng, Yuan-Chih Hsieh, Lan-Lin Chao, Chun-Wen Cheng, Chia-Shiung Tsai
  • Publication number: 20110227189
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming patterned features over the semiconductor substrate, wherein gaps are formed between the patterned features; filling the gaps with a first filling material, wherein the first filling material has a first top surface higher than top surfaces of the patterned features; and performing a first planarization to lower the top surface of the first filling material, until the top surfaces of the patterned features are exposed. The method further includes depositing a second filling material, wherein the second filling material has a second top surface higher than the top surfaces of the patterned features; and performing a second planarization to lower the top surface of the second filling material, until the top surfaces of the patterned features are exposed.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 22, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yuan Wu, Kong-Beng Thei, Chiun-Han Yeh, Harry Chuang, Mong-Song Liang
  • Publication number: 20110227188
    Abstract: An integrated circuit includes a core area. The core area has at least one edge region and a plurality of transistors disposed in the edge region. A plurality of dummy structures are disposed outside the core area and adjacent to the at least one edge region. Each channel of the transistors in a channel width direction faces at least one of the dummy structures.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Hsun WANG, Chih-Sheng CHANG, Hsien-Hui MENG
  • Patent number: 8018065
    Abstract: A wafer-level, batch processed, die-sized integrated circuit (IC) package with both top and bottom side electrical connections is disclosed. In one aspect, a number of bonding wires can be attached to bond pads on the top side (active circuit side) of an IC wafer. Trenches can be formed in the wafer at scribe regions and the bonding wires can extend through the trench. The trench can be filled with coating material. The bonding wires can be partially exposed on the top and/or bottom sides of the wafer to distribute electrical connections from the bond pads to the top and/or bottom sides of the wafer.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: September 13, 2011
    Assignee: Atmel Corporation
    Inventor: Ken Lam
  • Publication number: 20110193192
    Abstract: An apparatus and a method for producing three-dimensional integrated circuit packages. In one embodiment, an electronics package with at least two dice are stacked one atop another is disclosed. A top die is of smaller size compared with a bottom die such that after a die attach operation, wire-bond pads of the bottom die will be exposed for a subsequent wire bonding operation. The bottom die contains contact pads on the front side that couple with one or more passive components fabricated on the back side of the top die to complete the circuit. In another exemplary embodiment, a method to form one or more three-dimensional passive components in a stacked-die package is disclosed wherein partial inductor elements are fabricated on the front side of the bottom die and the back side of the top die. The top and bottom elements are coupled together completing the passive component.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 11, 2011
    Applicant: ATMEL CORPORATION
    Inventor: Ken M. Lam
  • Publication number: 20110186930
    Abstract: A power gate includes a series of electrical contacts along at least a portion of an integrated circuit and a series of power gate transistors electrically coupled to the electrical contacts on the integrated circuit to form a power gate boundary, e.g., at the integrated circuit periphery. The electrical contacts along at least a portion of a running length of the power gate boundary define a substantially non-linear profile. The non-linear profile provides increased contact density which improves current balancing across the electrical contacts and current throughput through the power gate. The non-linear profile is a sinusoidal or zigzag pattern with intermediate offset bump contacts. The contact profiles along the power gate boundary can include both linear and non-linear profiles.
    Type: Application
    Filed: April 12, 2010
    Publication date: August 4, 2011
    Inventor: Stephen V. Kosonocky
  • Publication number: 20110186960
    Abstract: Embodiments of the present disclosure provide a method comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, electrically coupling one or more dies to the redistribution layer, forming a molding compound on the semiconductor substrate, recessing the second surface of the semiconductor substrate, forming one or more channels through the recessed second surface of the semiconductor substrate to expose the redistribution layer; and forming one or more package interconnect structures in the one or more channels, the one or more package interconnect structures being electrically coupled to the redistribution layer, the one or more package interconnect structures to route electrical signals of the one or more dies. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 4, 2011
    Inventors: Albert Wu, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Patent number: 7989849
    Abstract: An integrated circuit has a power rail formed of a first wire in a lower metal layer and a second wire in an upper metal layer and that run in the same direction in their respective layers. A number of vias connect the first and second wires, to form a sandwich power rail structure. Other embodiments are also described and claimed.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: August 2, 2011
    Assignee: Synopsys, Inc.
    Inventors: Deepak Sherlekar, Darrell Heinecke, Eswar Veluri
  • Publication number: 20110175197
    Abstract: A semiconductor integrated circuit device includes: a plurality of data holding circuits; and a plurality of wells. The plurality of data holding circuits is provided in a substrate of a first conductive type. Each of the plurality of data holding circuits includes a first well of the first conductive type and a second well of a second conductive type different from the first conductive type. The plurality of wells is arranged in two directions for the each of the plurality of data holding circuits.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 21, 2011
    Inventor: Hiroshi FURUTA
  • Publication number: 20110163393
    Abstract: A method of manufacturing a semiconductor device on a substrate (10) is disclosed. The method comprises providing the substrate (10) including a body region (12) protruding from said substrate (10), the body region (12) being covered by a gate electrode material (16, 56) forming a first gate region (18) on a first side of the body region (12) and a second gate region (20) on a second side of the body region (12), the gate material (16, 56) being separated from the body region (12) by a dielectric layer (14); and introducing a dopant (22, 58) of a first conductivity type into the gate electrode material (16, 56) such that the first gate region (18, 20) is exposed to the dopant while the second gate region (20, 18) is substantially sheltered from the dopant by the protruding body region (12). This allows for versatile tuning of the work function of a single gate to be formed. An integrated circuit comprising such a semiconductor device is also disclosed.
    Type: Application
    Filed: May 20, 2009
    Publication date: July 7, 2011
    Applicant: NXP B.V.
    Inventor: Robert J. P. Lander
  • Publication number: 20110127633
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 2, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Publication number: 20110108945
    Abstract: A semiconductor chip includes a seal ring adjacent to edges of the semiconductor chip; an opening extending from a top surface to a bottom surface of the seal ring, wherein the opening has a first end on an outer side of the seal ring and a second end on an inner side of the seal ring; and a moisture barrier having a sidewall parallel to a nearest side of the seal ring, wherein the moisture barrier is adjacent the seal ring and has a portion facing the opening.
    Type: Application
    Filed: January 17, 2011
    Publication date: May 12, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Jung Wang, Jian-Hong Lin
  • Patent number: 7935607
    Abstract: According to one aspect of the present invention, a method of forming a microelectronic assembly, such as an integrated passive device (IPD) (72), is provided. An insulating dielectric layer (32) having a thickness (36) of at least 4 microns is formed over a silicon substrate (20). At least one passive electronic component (62) is formed over the insulating dielectric layer (32).
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: May 3, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jonathan K. Abrokwah, Keri L. Costello, James G. Cotronakis, Terry K. Daly, Jason R. Fender, Adolfo G. Reyes
  • Publication number: 20110089530
    Abstract: This application relates to a semiconductor device comprising a first chip comprising a first electrode on a first face of the first chip, and a second chip attached to the first electrode, wherein the second chip comprises a transformer comprising a first winding and a second winding.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Inventor: Bernhard STRZALKOWSKI
  • Patent number: 7919341
    Abstract: There is provided a thin film forming apparatus for precisely forming a film of an organic EL material made of a polymer without a positional deviation and at a high throughput. A pixel portion is divided into a plurality of pixel lines by banks, and a head portion of the thin film forming apparatus is moved along the pixel lines, so that a coating liquid (R), a coating liquid (G), and a coating liquid (B) can be applied respectively in a stripe shape at the same time. Then, luminescent layers emitting lights of respective colors of red, green and blue can be formed by heating these coating liquids.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 5, 2011
    Assignee: Semiconductor Energy laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kunitaka Yamamoto, Masaaki Hiroki, Takeshi Fukunaga
  • Publication number: 20110068313
    Abstract: Memory cells of a memory device including a variable resistance material have a cavity between the memory cells. Electronic systems include such memory devices. Methods of forming a memory device include providing a cavity between memory cells of the memory device.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 24, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jun Liu
  • Publication number: 20110068386
    Abstract: A semiconductor device and a method for making a semiconductor device are disclosed. A trench mask may be applied to a semiconductor substrate, which is etched to form trenches with three different widths. A first conductive material is formed at the bottom of the trenches. A second conductive material is formed over the first conductive material. An insulator layer separates the first and second conductive materials. A first insulator layer is deposited on top of the trenches. A body layer is formed in a top portion of the substrate. A source is formed in the body layer. A second insulator layer is applied on top of the trenches and the source. A contact mask is applied on top of the second insulator layer. Source and gate contacts are formed through the second insulator layer. Source and gate metal are formed on top of the second insulator layer.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 24, 2011
    Applicant: ALPHA & OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Sung-Shan Tai, Hamza Yilmaz, Anup Bhalla, Hong Chang, John Chen
  • Publication number: 20110018090
    Abstract: To suppress stress variation on a channel forming region, a semiconductor device includes an element isolating region on the semiconductor substrate principal surface, and an element forming region on the principal surface to be surrounded by the element isolating region. The principal surface has orthogonal first and second directions. A circumferential shape of the element forming region has a first side extending along the first direction. The element forming region has a first transistor region (TR1), a second transistor region (TR2) arranged between the first side and TR1, and a dummy region on the first direction side of TR1. TR1 has a first channel forming region facing the first side. TR2 has a second channel forming region facing the first side. The first channel forming region has a non-facing region that is not facing the second channel forming region. The dummy region faces the non-facing region in the second direction.
    Type: Application
    Filed: June 29, 2010
    Publication date: January 27, 2011
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Toshihide YAMAGUCHI