To Produce Devices Each Consisting Of Plurality Of Components, E.g., Integrated Circuits (epo) Patents (Class 257/E21.602)

  • Publication number: 20120313664
    Abstract: It is desirable to design and manufacture electronic chips that are resistant to modern reverse engineering techniques. Disclosed is a method and device that allows for the design of chips that are difficult to reverse engineer using modern teardown techniques. The disclosed device uses devices having the same geometry but different voltage levels to create different logic devices. Alternatively, the disclosed uses devices having different geometries and the same operating characteristics. Also disclosed is a method of designing a chip using these devices.
    Type: Application
    Filed: July 29, 2011
    Publication date: December 13, 2012
    Applicant: STATIC CONTROL COMPONENTS, INC.
    Inventors: William Eli Thacker, III, Robert Francis Tenczar, Michael Clinton Hoke
  • Publication number: 20120315726
    Abstract: Provided are methods of manufacturing a semiconductor chip package. The method includes forming a plurality of semiconductor chips, each of which includes a semiconductor substrate having a front and back surfaces facing each other, a chip pad provided on the front surface of the semiconductor substrate, and an interconnection pattern extending from the chip pad along a sidewall of the semiconductor substrate, stacking the semiconductor chips such that the interconnection patterns of the semiconductor chips directly contact each other, and reflowing the interconnection patterns of the semiconductor chips to connect the stacked semiconductor chips with each other.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Inventors: HAK-KYOON BYUN, Bu-Won Kim, Raehyung Do, JongBo Shim, Woodong Lee
  • Publication number: 20120313147
    Abstract: A semiconductor device has a substrate with a source region and a drain region formed on the substrate. A silicide layer is disposed over the source region and drain region. A first interconnect layer is formed over the silicide layer and includes a first runner connected to the source region and second runner connected to the drain region. A second interconnect layer is formed over the first interconnect layer and includes a third runner connected to the first runner and a fourth runner connected to the second runner. An under bump metallization (UBM) is formed over and electrically connected to the second interconnect layer. A mask is disposed over the substrate with an opening in the mask aligned over the UBM. A conductive bump material is deposited within the opening in the mask. The mask is removed and the conductive bump material is reflowed to form a bump.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Applicant: GREAT WALL SEMICONDUCTOR CORPORATION
    Inventors: Samuel J. Anderson, David N. Okada
  • Publication number: 20120315710
    Abstract: In order to provide a method for producing semiconductor devices that can use the highly productive W to W method, and achieve a high yield, a method for producing semiconductor devices comprises a step (S401) in which a reconstituted wafer is prepared by replacing defective chips with non-defective chips, a step (S403) in which the reconstituted wafer and the base wafer are connected to one another by laminating, a step (S406) in which through-electrodes are formed in the reconstituted wafer, and a step (S409) in which a separate reconstituted wafer is laminated onto and connected to the reconstituted wafer having through-electrodes.
    Type: Application
    Filed: February 1, 2011
    Publication date: December 13, 2012
    Inventors: Kazuyuki Hozawa, Kenichi Takeda, Mayu Aoki
  • Patent number: 8325529
    Abstract: Bit line connections for non-volatile storage devices and methods for fabricating the same are disclosed. At least two different types of bit line connections may be used between memory cells and bit lines. The different types of bit line connections may be structurally different from each other as follows. One type of bit line connection may include a metal pad between an upper via and lower via. Another type of bit line connection may include an upper via and lower via, but does not include the metal pad. Three rows of bit line connections may be used to relax the pitch. For example, two rows of bit line connections on the outside may have the metal pad, whereas bit line connections in the middle row do not have the metal pad.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 4, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Chen-Che Huang, Chun-Ming Wang, Masaaki Higashitani
  • Patent number: 8314014
    Abstract: A laser processing apparatus including a laser beam applying unit. The laser beam applying unit includes a laser beam generating unit, a focusing unit, and an optical system for guiding a laser beam from the laser beam generating unit to the focusing unit.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: November 20, 2012
    Assignee: Disco Corporation
    Inventor: Hiroshi Morikazu
  • Publication number: 20120286331
    Abstract: Integrated circuit (5) includes substrate (10) with surface (20) and structure (30) including base levels (45.i, 45.(i+1)), terminating cells (48, 49), and block (40) of standard cells arranged in rows (42.i, 42.(i+1)), and another type of block (60) outside block (40). Standard cells at at least two edges of block (40) have the following protections: (1) block (60) has strip of separation (41.j) having at least a minimum width from the edges of block (40), and protected by one of the following: (2) terminating cells (48, 49) reduce context effect and some terminating cells (48) are placed at i least one end of rows (42.i, 42.(i+1)) of standard cells within first-named block (40), and (3) the terminating cells (48, 49) reduce context effect and some terminating cells (49) are at one end of a column of standard cells within block (40). Other structures, devices, and processes are also disclosed.
    Type: Application
    Filed: April 24, 2012
    Publication date: November 15, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Thomas J. Aton, Roger Mark Terry, Robert L. Pitts
  • Patent number: 8309441
    Abstract: One embodiment is a method of forming a circuit structure. The method comprises forming a first amorphous layer over a substrate; forming a first glue layer over and adjoining the first amorphous layer; forming a second amorphous layer over and adjoining the first glue layer; and forming a plurality of posts separated from each other by removing a first portion of the first amorphous layer and a first portion of the second amorphous layer. At least some of the plurality of posts each comprises a second portion of the first amorphous layer, a first portion of the first glue layer, and a second portion of the second amorphous layer.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: November 13, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiou-Kang Lee, Chun-Ren Cheng, Shang-Ying Tsai, Ting-Hau Wu, Hsiang-Fu Chen
  • Publication number: 20120281329
    Abstract: This invention discloses an electronic device formed as an integrated circuit (IC) wherein the electronic device further includes a transient voltage suppressing (TVS) circuit for suppressing a transient voltage. The transient voltage suppressing (TVS) circuit includes a Zener diode connected between a ground terminal and a node for triggering a snapback circuit. In one embodiment, this node may be a Vcc terminal. The TVS device further includes a snapback circuit connected in parallel to the Zener diode for conducting a transient voltage current with a snapback current-voltage (I-V) characteristic upon turning on of the snapback circuit. And, the TVS device further includes a snapback suppressing circuit connected in series with the snapback circuit for conducting a current with an I-V characteristic complementary to the snapback-IV characteristic for clamping a snapback voltage.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 8, 2012
    Inventor: Shekar Mallikarjunaswamy
  • Publication number: 20120282735
    Abstract: A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
    Type: Application
    Filed: April 4, 2012
    Publication date: November 8, 2012
    Inventors: Jung-seok Ahn, Dong-hyeon Jang, Ho-geon Song, Sung-jun Im, Chang-seong Jeon, Teak-hoon Lee, Sang-sick Park
  • Publication number: 20120273748
    Abstract: A method of forming a memory device includes providing a substrate having a surface region, defining a cell region and first and second peripheral regions, sequentially forming a first dielectric material, a first wiring structure for a first array of devices, and a second dielectric material over the surface region, forming an opening region in the first peripheral region, the opening region extending in a portion of at least the first and second dielectric materials to expose portions of the first wiring structure and the substrate, forming a second wiring material that is overlying the second dielectric material and fills the opening region to form a vertical interconnect structure in the first peripheral region, and forming a second wiring structure from the second wiring material for a second array of devices, the first and second wiring structures being separated from each other and electrically connected by the vertical interconnect structure.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 1, 2012
    Applicant: Crossbar Inc.
    Inventor: Scott Brad HERNER
  • Publication number: 20120267689
    Abstract: An integrated circuit memory device, including a memory circuit and a peripheral circuit, is described which is suitable for low cost manufacturing. The memory circuit and peripheral circuit for the device are implemented in different layers of a stacked structure. The memory circuit layer and the peripheral circuit layer include complementary interconnect surfaces, which upon mating together establish the electrical interconnection between the memory circuit and the peripheral circuit. The memory circuit layer and the peripheral circuit layer can be formed separately using different processes on different substrates in different fabrication lines. This enables the use of independent fabrication process technologies, one arranged for the memory array, and another arranged for the supporting peripheral circuit. The separate circuitry can then be stacked and bonded together.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Shih-Hung Chen, Hang-Ting Lue, Kuang Yeu Hsieh
  • Patent number: 8293580
    Abstract: Provided is a method of forming a package-on-package. An encapsulation is formed to cover a wafer using a wafer level molding process. The wafer includes a plurality of semiconductor chips and a plurality of through silicon vias (TSVs) passing through the semiconductor chips. The encapsulant may have openings aligned with the TSVs. The encapsulant and the semiconductor chips are divided to form a plurality of semiconductor packages. Another semiconductor package is stacked on one selected from the semiconductor packages. The other semiconductor package is electrically connected to the TSVs.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 23, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Hun Kim, Jin-Woo Park, Dae-Young Choi, Mi-Yeon Kim, Sun-Hye Lee
  • Publication number: 20120261722
    Abstract: A method of forming circuitry components includes forming a stack of horizontally extending and vertically overlapping features. The stack has a primary portion and an end portion. At least some of the features extend farther in the horizontal direction in the end portion moving deeper into the stack in the end portion. Operative structures are formed vertically through the features in the primary portion and dummy structures are formed vertically through the features in the end portion. Horizontally elongated openings are formed through the features to form horizontally elongated and vertically overlapping lines from material of the features. The lines individually extend from the primary portion into the end portion, and individually laterally about sides of vertically extending portions of both the operative structures and the dummy structures.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Inventors: Sanh D. Tang, Roger W. Lindsay, Krishna K. Parat
  • Publication number: 20120252171
    Abstract: A method for forming an integrated circuit for a non-volatile memory cell transistor is disclosed that includes: forming a layer of discrete storage elements over a substrate in a first region of the substrate and in a second region of the substrate; forming a first layer of dielectric material over the layer of discrete storage elements in the first region and the second region; forming a first layer of barrier work function material over the first layer of dielectric material in the first region and the second region; and removing the first layer of barrier work function material from the second region, the first layer of dielectric material from the second region, and the layer of discrete storage elements from the second region. After the removing, a second layer of barrier work function material is formed over the substrate in the first region and the second region. The second layer of barrier work function material is removed from the first region.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Publication number: 20120241951
    Abstract: Methods, systems, and apparatuses for printing under bump metallization (UBM) features on chips/wafers are provided. A wafer is received that has a surface defined by a plurality of integrated circuit regions. Each integrated circuit region has a passivation layer and a plurality of terminals on the surface of the wafer accessible through openings in the passivation layer. A plurality of UBM features are formed on the surface of the wafer in the form of an ink such that each UBM feature is formed electrically coupled with a corresponding terminal of the plurality of terminals. An ink jet printer may be used to print the ink in the form of the UBM feature. A UBM feature may be formed directly on a corresponding terminal, or on routing that is coupled to the corresponding terminal. A bump interconnect may be formed on the UBM feature.
    Type: Application
    Filed: June 8, 2012
    Publication date: September 27, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Kunzhong (Kevin) Hu, Edward Law
  • Publication number: 20120244661
    Abstract: A semiconductor wafer contains a plurality of die with contact pads disposed on a first surface of each die. Metal vias are formed in trenches in the saw street guides and are surrounded by organic material. Traces connect the contact pads and metal vias. The metal vias can be half-circle vias or full-circle vias. Metal vias are also formed through the contact pads on the active area of the die. Redistribution layers (RDL) are formed on a second surface of the die opposite the first surface. Repassivation layers are formed between the RDL for electrical isolation. The die are stackable and can be placed in a semiconductor package with other die. The vias through the saw streets and vias through the active area of the die, as well as the RDL, provide electrical interconnect to the adjacent die.
    Type: Application
    Filed: February 7, 2011
    Publication date: September 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Linda Pei Ee Chua
  • Publication number: 20120235211
    Abstract: Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Patent number: 8247845
    Abstract: Semiconductor devices, methods of manufacturing thereof, and methods of arranging circuit components of an integrated circuit are disclosed. In one embodiment, a semiconductor device includes an array of a plurality of devices arranged in a plurality of rows. At least one electrostatic discharge (ESD) protection circuit or a portion thereof is disposed in at least one of the plurality of rows of the array of the plurality of devices.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: August 21, 2012
    Assignee: Infineon Technologies AG
    Inventors: Uwe Paul Schroeder, David Alvarez
  • Publication number: 20120193649
    Abstract: An electronic device may include a packaging substrate having a packaging substrate face with a plurality of electrically conductive pads on the packaging substrate face. A first light emitting diode die may bridge first and second ones of the electrically conductive pads. More particularly, the first light emitting diode die may include first anode and cathode contacts respectively coupled to the first and second electrically conductive pads using metallic bonds. Moreover, widths of the metallic bonds between the first anode contact and the first pad and between the first cathode contact and the second pad may be at least 60 percent of a width of the first light emitting diode die. A second light emitting diode die may bridge third and fourth ones of the electrically conductive pads. The second light emitting diode die may include second anode and cathode contacts respectively coupled to the third and fourth electrically conductive pads using metallic bonds.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 2, 2012
    Inventors: Matthew Donofrio, John Adam Edmond, Hua-Shuang Kong, Peter S. Andrews, David Todd Emerson
  • Publication number: 20120193779
    Abstract: A stack of semiconductor chips, a semiconductor device, and a method of manufacturing are disclosed. The stack of semiconductor chips may comprise a first chip of the stack, a second chip of the stack over the first chip, conductive bumps, a homogeneous integral underfill material, and a molding material. The conductive bumps may extend between an upper surface of the first chip and a lower surface of the second chip. The homogeneous integral underfill material may be interposed between the first chip and the second chip, encapsulate the conductive bumps, and extend along sidewalls of the second chip. The homogeneous integral underfill material may have an upper surface extending in a direction parallel to an upper surface of the second chip and located adjacent the upper surface of the second chip.
    Type: Application
    Filed: July 1, 2011
    Publication date: August 2, 2012
    Inventors: Chung-Sun Lee, Jung-Hwan Kim, Tae-Hong Min, Hyun-Jung Song, Sun-Pil Youn
  • Patent number: 8222091
    Abstract: A method of making a device includes providing a first device level containing first semiconductor rails separated by first insulating features, forming a sacrificial layer over the first device level, patterning the sacrificial layer and the first semiconductor rails in the first device level to form a plurality of second rails extending in a second direction, wherein the plurality of second rails extend at least partially into the first device level and are separated from each other by rail shaped openings which extend at least partially into the first device level, forming second insulating features between the plurality of second rails, removing the sacrificial layer, and forming second semiconductor rails between the second insulating features in a second device level over the first device level. The first semiconductor rails extend in a first direction. The second semiconductor rails extend in the second direction different from the first direction.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 17, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Vinod Robert Purayath, George Matamis, James Kai, Takashi Orimoto
  • Publication number: 20120175773
    Abstract: An integrated circuit (IC) device is provided. The IC device includes an IC die having opposing first and second surfaces, a carrier coupled to the first surface of the IC die, a laminate coupled to the carrier and the second surface of the IC die, and a trace located on a surface of the laminate and electrically coupled to a bond pad located on the second surface of the IC die. The trace is configured to couple the bond pad to a circuit board.
    Type: Application
    Filed: February 18, 2011
    Publication date: July 12, 2012
    Applicant: Broadcom Corporation
    Inventors: Kevin (Kunzhong) HU, Edward Law
  • Patent number: 8211756
    Abstract: Programmable fuse-type through silicon vias (TSVs) in silicon chips are provided with non-programmable TSVs in the same chip. The programmable fuse-type TSVs may employ a region within the TSV structure having sidewall spacers that restrict the cross-sectional conductive path of the TSV adjacent a chip surface contact pad. Application of sufficient current by programming circuitry causes electromigration of metal to create a void in the contact pad and, thus, an open circuit. Programming may be carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kai Di Feng, Louis Lu-Chen Hsu, Ping-Chuan Wang, Zhijian Yang
  • Publication number: 20120164799
    Abstract: In a sophisticated semiconductor device, a semiconductor-based electronic fuse may be formed in a bulk configuration, wherein the design and thus the configuration of the contact areas and the fuse region provide a wide programming window in terms of programming voltages and duration of the corresponding programming pulses.
    Type: Application
    Filed: August 12, 2011
    Publication date: June 28, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Andreas Kurz, Christoph Schwan, Dirk Fimmel
  • Publication number: 20120155195
    Abstract: Described herein are various principles for designing, manufacturing, and operating integrated circuits having functional components and one or more metal interconnect layers, where the dimensions of signal lines of the metal interconnect layers are larger than dimensions of the functional components. In some embodiments, a signal line may have a width greater than a width of a terminal of a functional component to which the signal line is connected. In some embodiments, two functional components formed in a same functional layer of the integrated circuit may be connected to metal signal lines in different metal interconnect layers. Further, the metal signal lines of the different metal interconnect layers may overlap some distance.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: STMicroelectronics Inc.
    Inventor: David V. Carlson
  • Publication number: 20120153357
    Abstract: Briefly, in accordance with one or more embodiments, multilayer memory device, comprising a lower deck and an upper deck disposed on the lower deck, the decks comprising one or more memory cells coupled via one or more contacts. An isolation layer is disposed between the upper deck, and one or more contacts are formed between the upper deck and the lower deck to couple one or more of the contact lines of the upper deck with one or more contact lines of the lower deck.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Inventors: Sanh D. Tang, John Zahurak, Shane Trapp, Krishna K. Parat
  • Publication number: 20120139082
    Abstract: A microelectronic assembly is provided which includes a first element consisting essentially of at least one of semiconductor or inorganic dielectric material having a surface facing and attached to a major surface of a microelectronic element at which a plurality of conductive pads are exposed, the microelectronic element having active semiconductor devices therein. A first opening extends from an exposed surface of the first element towards the surface attached to the microelectronic element, and a second opening extends from the first opening to a first one of the conductive pads, wherein where the first and second openings meet, interior surfaces of the first and second openings extend at different angles relative to the major surface of the microelectronic element. A conductive element extends within the first and second openings and contacts the at least one conductive pad.
    Type: Application
    Filed: March 18, 2011
    Publication date: June 7, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8193521
    Abstract: A phase change memory cell and methods of fabricating the same are presented. The memory cell includes a variable resistance region and a top and bottom electrode. The shapes of the variable resistance region and the top electrode are configured to evenly distribute a current with a generally hemispherical current density distribution around the first electrode.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: June 5, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Mike Violette
  • Publication number: 20120132963
    Abstract: An integrated circuit (IC) cell may include first and second semiconductor regions, and parallel electrically conductive lines extending above the first and second semiconductor regions. The IC cell may further include electrically conductive line contacts electrically connected to the parallel electrically conductive lines, and may include at least one first line contact between the first semiconductor region and a corresponding end of the IC cell, and at least one second line contact between the first semiconductor region and the second semiconductor region. Adjacent ones of the electrically conductive lines may be respectively coupled to one of the at least one first line contact and to one of the at least one second line contact.
    Type: Application
    Filed: September 21, 2011
    Publication date: May 31, 2012
    Applicants: STMicroelectronics STM, STMicroelectronics (Grenoble 2) SA
    Inventors: Rwik Sengupta, Rohit Kumar Gupta, Mitesh Goyal, Olivier Menut
  • Patent number: 8188564
    Abstract: A method for manufacturing a semiconductor device including a thin film device unit including a TFT, and a peripheral device unit provided around the thin film device unit and including a semiconductor element, includes a first step of preparing a substrate, a second step of bonding the peripheral device unit directly to the substrate, and a third step of forming the thin film device unit on the substrate to which the peripheral device unit is bonded.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 29, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuhide Tomiyasu, Yutaka Takafuji, Yasumori Fukushima, Kazuo Nakagawa
  • Publication number: 20120108034
    Abstract: Provided are a substrate structure which may solve problems generated in a manufacturing process while having a relatively low resistance buried wiring, a method for manufacturing the substrate structure, and a semiconductor device and a method for manufacturing the same using the substrate structure. The substrate structure may include a supporting substrate, an insulating layer disposed on the supporting substrate, a line-shaped conductive layer pattern disposed in the insulating layer to extend in a first direction, and a line-shaped semiconductor pattern disposed in the insulating layer and on the conductive layer pattern to extend in the first direction and having a top surface exposed to the outside of the insulating layer.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 3, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae-Lok Bae, Gil-Heyun Choi, Byung-Lyul Park, Pil-Kyu Kang
  • Patent number: 8168478
    Abstract: The invention relates to a method for producing a matrix of electronic components, comprising a step of producing an active layer on a substrate, and a step of individualizing the components by forming trenches in the active layer at least until the substrate emerges. The method comprises steps of depositing a layer of functional material on the active layer, depositing a photosensitive resin on the layer of material in such a way as to fill said trenches and to form a thin film on the upper face of the components, at least partially exposing the resin to radiation while underexposing the portion of resin in the trenches, developing the resin in such a way as to remove the properly exposed portion thereof, removing the functional material layer portion that shows through after the development step, and removing the remaining portion of resin.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: May 1, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Francois Marion, Olivier Gravrand
  • Patent number: 8158446
    Abstract: A method of manufacturing a semiconductor device includes: forming a groove portion in a dicing region of an insulating layer and forming a via hole in an internal circuit formation region; providing a first resist film on the insulating layer; providing a second resist film to cover the first resist film; forming an interconnect opening in a region covering an internal circuit formation region of the second resist film and forming a position aligning opening in a region covering the dicing region of the second resist film; and detecting a positional relationship between the groove portion and the position aligning opening so as to detect whether the interconnect opening of the second resist film exists at a predetermined position with respect to the via hole of the insulating layer. In selective removing of the second resist film, the position aligning opening is formed such that a region of the position aligning opening covers the groove portion of the insulating layer.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Manabu Iguchi, Mami Miyasaka
  • Publication number: 20120081945
    Abstract: A memory array with graded resistance lines includes a first set of lines intersecting a second set of lines. A line from one of the sets of lines includes a graded resistance along a length of the line.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Inventors: Jianhua Yang, John Paul Strachan, Wei Wu, Janice H. Nickel
  • Publication number: 20120077318
    Abstract: A method of making a device includes providing a first device level containing first semiconductor rails separated by first insulating features, forming a sacrificial layer over the first device level, patterning the sacrificial layer and the first semiconductor rails in the first device level to form a plurality of second rails extending in a second direction, wherein the plurality of second rails extend at least partially into the first device level and are separated from each other by rail shaped openings which extend at least partially into the first device level, forming second insulating features between the plurality of second rails, removing the sacrificial layer, and forming second semiconductor rails between the second insulating features in a second device level over the first device level. The first semiconductor rails extend in a first direction. The second semiconductor rails extend in the second direction different from the first direction.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Inventors: Vinod Robert PURAYATH, George MATAMIS, James KAI, Takashi ORIMOTO
  • Publication number: 20120061734
    Abstract: Micro-electromechanical system (MEMS) devices and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a semiconductive layer disposed over a substrate. A trench is disposed in the semiconductive layer, the trench with a first sidewall and an opposite second sidewall. A first insulating material layer is disposed over an upper portion of the first sidewall, and a conductive material disposed within the trench. An air gap is disposed between the conductive material and the semiconductive layer.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: Infineon Technologies AG
    Inventors: Karl-Heinz Mueller, Bernhard Winkler, Robert Gruenberger
  • Publication number: 20120061732
    Abstract: According to one embodiment, an information recording/reproducing device including a semiconductor substrate, a first interconnect layer on the semiconductor substrate, a first memory cell array layer on the first interconnect layer, and a second interconnect layer on the first memory cell array layer. The first memory cell array layer comprises an insulating layer having an alignment mark, and a stacked layer structure on the insulating layer and including a storage layer and an electrode layer. All of the layers in the stacked layer structure comprises a material with a permeability of visible light of 1% or more.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Inventors: Takahiro HIRAI, Tsukasa NAKAI, Kohichi KUBO, Chikayoshi KAMATA, Takayuki TSUKAMOTO, Shinya AOKI
  • Publication number: 20120049320
    Abstract: A semiconductor substrate can be patterned to define a trench and a feature. In an embodiment, the trench can be formed such that after filling the trench with a material, a bottom portion of the filled trench may be exposed during a substrate thinning operation. In another embodiment, the trench can be filled with a thermal oxide. The feature can have a shape that reduces the likelihood that a distance between the feature and a wall of the trench will be changed during subsequent processing. A structure can be at least partly formed within the trench, wherein the structure can have a relatively large area by taking advantage of the depth of the trench. The structure can be useful for making electronic components, such as passive components and through-substrate vias. The process sequence to define the trenches and form the structures can be tailored for many different process flows.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: John Michael Parsey, JR., Gordon M. Grivna
  • Publication number: 20120049374
    Abstract: A semiconductor device has first and second interconnect structures in first and second columns, respectively, of an array. Each of the first and second interconnect structures has a reference voltage node and first, second, third, and fourth conductors that are coupled to each other and formed at a first layer, a second layer, a third layer, and a fourth layer, respectively, over a substrate having a plurality of devices defining a plurality of bit cells. The reference voltage node of each interconnect structure provides a respectively separate reference voltage to a bit cell corresponding to said interconnect structure. None of the first, second, third, and fourth conductors in either interconnect structure is connected to a corresponding conductor in the other interconnect structure. The second layer is above the first layer, the third layer is above the second layer, and the fourth layer is above the third layer.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jacklyn CHANG, Kuoyuan HSU, Derek C. TAO
  • Publication number: 20120049332
    Abstract: A semiconductor package and method for making the same are provided, wherein a lower chip having a plurality of conductive structures is bonded to an upper surface of a package substrate and a plurality of matrix walls are formed on the upper surface for surrounding the lower chip, such that an overcoat layer covering the matrix walls and the lower chip can be approximately removed after performing a grinding process to the lower chip to expose a plurality of conductive vias of the lower chip. The cleaning step for removing the residue of overcoat layer can be omitted, and the processing yield and the processing efficiency can be improved. The semiconductor package and the method is particularly suitable for stacking a large dimensional upper chip on a relatively small dimensional lower chip.
    Type: Application
    Filed: July 12, 2011
    Publication date: March 1, 2012
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Jen-Chuan Chen, Hui-Shan Chang, Wen-Hsiung Chang, Wei-Nung Chang
  • Patent number: 8124521
    Abstract: A method of fabricating an electrical contact through a through hole in a substrate, wherein the through hole is at least in part filled with a liquid conductive material and the solidified liquid conductive material provides an electrical contact through the through hole.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: February 28, 2012
    Assignee: Qimonda AG
    Inventors: Harry Hedler, Roland Irsigler, Volker Lehmann, Judith Lehmann, legal representative, Thorsten Meyer, Octavio Trovarelli
  • Publication number: 20120043614
    Abstract: A semiconductor device includes a substrate, a device isolation pattern and a passive circuit element. The device isolation pattern is located on the substrate, delimits an active region of the substrate, and includes a recessed portion having a bottom surface located below a plane coincident with a surface of the active region. The passive circuit element is situated in the recess so as to be disposed on the bottom surface of the recessed portion of the device isolation pattern.
    Type: Application
    Filed: December 27, 2010
    Publication date: February 23, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sukhun Choi, Boun Yoon, Injoon Yeo, Jeongnam Han
  • Patent number: 8119501
    Abstract: Provided is a method for separating a semiconductor wafer into individual semiconductor dies. The method for separating the semiconductor wafer, among other steps, may include implanting an impurity into regions of a semiconductor wafer proximate junctions where semiconductor dies join one another, the impurity configured to disrupt bonds in the semiconductor wafer proximate the junctions and lead to weakened regions. The method for separating the semiconductor wafer may further include separating the semiconductor wafer having the impurity into individual semiconductor dies along the weakened regions.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: February 21, 2012
    Assignee: Agere Systems Inc.
    Inventors: Edward B. Harris, Kurt G. Steiner
  • Publication number: 20120037969
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates (60) and lower resistance inductors (44?, 45?) for the IC (46). This eliminates significant in-substrate electromagnetic coupling losses from planar inductors (44, 45) and interconnections (50-1?, 52-1?, 94, 94?, 94?) overlying the substrate (60). The active transistor(s) (41?) are formed in the substrate (60) proximate the front face (63). Planar capacitors (42?, 43?) are also formed over the front face (63) of the substrate (60). Various terminals (42-1?, 42-2?, 43-1, 43-2?,50?, 51?, 52?, 42-1?, 42-2?, etc.) of the transistor(s) (41?), capacitor(s) (42?, 43?) and inductor(s) (44?, 45?) are coupled to a ground plane (69) on the rear face (62) of the substrate (60) using through-substrate-vias (98, 98?) to minimize parasitic resistance.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Publication number: 20120039104
    Abstract: An integrated circuit with a memory cell is disclosed. The integrated circuit with a memory cell includes: a word line disposed in a word line trench of a substrate; a bit line disposed below the word line in a bit line trench and extending orthogonal to the word line; and, a separating layer disposed above the bit line in the bit line trench that separates the word line from the bit line; wherein an etching rate of the separating layer approaches that of the substrate.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Inventors: Yung-Chang LIN, Sheng-Change Liang
  • Publication number: 20120032702
    Abstract: Hardened programmable logic devices are provided with programmable circuitry. The programmable circuitry may be hardwired to implement a custom logic circuit. Generic fabrication masks may be used to form the programmable circuitry and may be used in manufacturing a product family of hardened programmable logic devices, each of which may implement a different custom logic circuit. Custom fabrication masks may be used to hardwire the programmable circuitry to implement a specific custom logic circuit. The programmable circuitry may be hardwired in such a way that signal timing characteristics of a hardened programmable logic device that implements a custom logic circuit may match the signal timing characteristics of a programmable logic device that implements the same custom logic circuit using configuration data.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 9, 2012
    Inventors: Andy L. Lee, Jeffrey T. Watt
  • Publication number: 20120032136
    Abstract: A resistive random access memory array may be formed on the same substrate with a fuse array. The random access memory and the fuse array may use the same active material. For example, both the fuse array and the memory array may use a chalcogenide material as the active switching material. The main array may use a pattern of perpendicular sets of trench isolations and the fuse array may only use one set of parallel trench isolations. As a result, the fuse array may have a conductive line extending continuously between adjacent trench isolations. In some embodiments, this continuous line may reduce the resistance of the conductive path through the fuses.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Inventors: Andrea Redaelli, Agostino Pirevano, Umberto M. Meotto, Giorgio Servalli
  • Publication number: 20120015486
    Abstract: Some embodiments include methods of forming patterns. A semiconductor substrate is formed to comprise an electrically insulative material over a set of electrically conductive structures. An interconnect region is defined across the electrically conductive structures, and regions on opposing sides of the interconnect region are defined as secondary regions. A two-dimensional array of features is formed over the electrically insulative material. The two-dimensional array extends across the interconnect region and across the secondary regions. A pattern of the two-dimensional array is transferred through the electrically insulative material of the interconnect region to form contact openings that extend through the electrically insulative material and to the electrically conductive structures, and no portions of the two-dimensional array of the secondary regions is transferred into the electrically insulative material.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Inventors: Dan Millward, Kaveri Jain, Zishu Zhang, Lijing Gou, Anton de Villiers, Jianming Zhou, Yuan He, Michael Hyatt, Scott L. Light
  • Publication number: 20120007213
    Abstract: A semiconductor chip includes: a semiconductor substrate in which a bonding pad is provided on a first surface thereof; a through silicon via (TSV) group including a plurality of TSVs connected to the bonding pad and exposed to a second surface opposite to the first surface of the semiconductor substrate; and a fuse box including a plurality of fuses connected to the plurality of TSVs and formed on the first surface of the semiconductor substrate.
    Type: Application
    Filed: May 31, 2011
    Publication date: January 12, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Hyeong Seok CHOI, Jin Hui LEE