To Produce Devices Each Consisting Of Plurality Of Components, E.g., Integrated Circuits (epo) Patents (Class 257/E21.602)

  • Publication number: 20110104872
    Abstract: A semiconductor device manufacturing method includes cutting a resin sealing body into a plurality of pieces, in which the resin sealing body includes a plurality of semiconductor chips mounted on a wiring board, a heat spreader disposed above the plurality of the semiconductor chips, and a sealing resin filled between the wiring board and the heat spreader. The cutting the resin sealing body includes shaving the resin sealing body from a side of the heat spreader, and shaving the resin sealing body from a side of the wiring board. The shaving the resin sealing body from the side of the heat spreader includes etching the heat spreader.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 5, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yuko Sato, Takehiko Maeda, Fumiyoshi Kawashiro
  • Patent number: 7935552
    Abstract: Disclosed are an ink composition and a method for fabricating a liquid crystal display (LCD) device using the same, wherein in forming patterns of the LCD device using an imprint lithography and a roll printing, an ink composition with high thermal resistance, consisting of polymer resin and additive both endurable even at a high temperature is used to form fine patterns with constantly maintaining pattern linewidths and line intervals, the ink composition consisting of 5-45% by weight of polymer resin, 5-45% by weight of additive added to retain thermal stability, and 50-90% by weight of organic solvent, wherein the ink composition is endurable even at a high temperature of 90-250° C.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 3, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Sung-Hee Kim, Soon-Sung Yoo, Jin-Wuk Kim, Byung-Geol Kim, Byung-Uk Kim, Ki-Beom Lee, Byong-Hoo Kim, Seung-Hyup Shin, Jun-Youg Song, Myoung-Soo Lee
  • Publication number: 20110085368
    Abstract: The non-volatile memory device may include a substrate, a plurality of first signal lines on the substrate in a vertical direction, a plurality of memory cells having ends connected to the plurality of first signal lines, a plurality of second signal lines perpendicular to the plurality of first signal lines on the substrate and each connected to other ends of the plurality of memory cells, and a plurality of selection elements on the substrate and connected to at least two of the plurality of first signal lines.
    Type: Application
    Filed: March 11, 2010
    Publication date: April 14, 2011
    Inventors: Ho-jung Kim, In-kyeong Yoo, Chang-jung Kim, Ki-ha Hong
  • Publication number: 20110086443
    Abstract: A manufacturing yield of a semiconductor device (capacitive micromachined ultrasonic transducer) is increased. A plurality of first chips 1 in which a plurality of cells each having functions of transmitting and receiving ultrasonic waves are formed on a front surface of a first semiconductor wafer are manufactured, and each of the first chips 1 is judged as a superior/inferior product, and then, the first semiconductor wafer is sigulated into a plurality of first chips 1. Next, a plurality of second chips 2 in which a wiring layer is formed on a front surface of a second semiconductor wafer are manufactured, and each of the second chips 2 is judged as a superior/inferior product, and then, the second semiconductor wafer is sigulated into a plurality of second chips 2.
    Type: Application
    Filed: June 5, 2009
    Publication date: April 14, 2011
    Inventors: Takashi Kobayashi, Shuntaro Machida, Kunio Hashiba
  • Patent number: 7923351
    Abstract: In a method of manufacturing semiconductor chips by dicing individual semiconductor devices from a semiconductor wafer, masks formed for plasma dicing in which a semiconductor wafer is divided by conducting plasma etching are removed by mechanical grinding using a grinding head. Accordingly, by removing the masks for plasma dicing using mechanical grinding, generation of reaction products is prevented when removing the masks, so that the dicing can be conducted without causing quality deterioration due to the accumulated particles.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: April 12, 2011
    Assignee: Panasonic Corporation
    Inventor: Kiyoshi Arita
  • Publication number: 20110069525
    Abstract: According to one embodiment, a nonvolatile memory device includes a memory cell. The memory cell is connected to a first interconnection and a second interconnection and includes a plurality of layers. The plurality of layers includes a memory layer and a carbon nanotube-containing layer which is in contact with the memory layer and contains a plurality of carbon nanotubes.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 24, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki FUKUMIZU, Yasuhiro Nojiri, Tsukasa Nakai
  • Publication number: 20110068318
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, an upper-layer wire provided on the substrate, a lower-layer wire provided on the substrate, a memory cell located at an intersection of the upper-layer wire and the lower-layer wire and includes a diode and a storage layer, a conductive layer located between the upper-layer wire and the memory cell in a direction perpendicular to the substrate surface, and an interlayer insulating film provided between memory cells. The position of an interface between the upper-layer wire and the interlayer insulating film is lower than a top surface of the conductive layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 24, 2011
    Inventors: Yutaka ISHIBASHI, Katsumasa Hayashi, Masahisa Sonoda
  • Patent number: 7910407
    Abstract: A non-volatile memory device includes a first electrode, a diode steering element, at least three resistivity switching storage elements, and a second electrode. The diode steering element electrically contacts the first electrode and the at least three resistivity switching storage elements. The second electrode electrically contacts only one of the at least three resistivity switching storage elements.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: March 22, 2011
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Publication number: 20110062489
    Abstract: An improved power device with a self-aligned suicide and a method for fabricating the device are disclosed. An example power device is a vertical power device that includes contacts formed on gate and body contact regions by an at least substantially self-aligned silicidation (e.g., salicide) process. The example device may also include one or more sidewall spacers that are each at least substantially aligned between edges of the gate region and the body contact region. The body contact region may also be implanted into the device in at least substantial self-alignment to the sidewall spacer. The method may also include an at least substantially self-aligned silicon etch.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 17, 2011
    Inventors: Donald R. Disney, Ognjen Milic
  • Publication number: 20110057267
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 10, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry Hak-Lay Chuang, Kong-Beng Thei, Sheng-Chen Chung, Chiung-Han Yeh, Lee-Wee Teo, Yu-Ying Hsu, Bao-Ru Young
  • Patent number: 7901999
    Abstract: The present invention provide circuits, methods, and apparatus directed to an integrated circuit having a memory interface that is configurable to have one of a multiple different bus widths. The memory interface has a first set of lines and a second set of lines. The first and second set of lines are arranged such that there are multiple locations at which a via may be placed to connect a line of the first set to a line of the second set. The placement of the vias determines the bus width of the memory interface.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: March 8, 2011
    Assignee: Altera Corporation
    Inventor: Kok Heng Choe
  • Publication number: 20110045644
    Abstract: A method of forming a programmable fuse structure includes forming at least one shallow trench isolation (STI) in a substrate, forming an e-fuse over the at least one STI and depositing an interlevel dielectric (ILD) layer over the e-fuse. Additionally, the method includes removing at least a portion of the at least one STI under the e-fuse to provide an air gap below a portion of the e-fuse and removing at least a portion of the ILD layer over the e-fuse to provide the air gap above the portion of the e-fuse.
    Type: Application
    Filed: November 4, 2010
    Publication date: February 24, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl W. Barth, Jeffrey P. Gambino, Tom C. Lee, Kevin S. Petrarca
  • Patent number: 7884445
    Abstract: An apparatus and method for holding a semiconductor device in a wafer. A bar is connected to the wafer. A first sidewall comprises a first end and a second, and is connected to the bar at its first end. A first tab comprises a first end and a second end, and is connected to the second end of the first sidewall at its first end and connected to the first side of the semiconductor device at its second end. The thickness of the first tab is less than the thickness of the bar and the thickness of the first sidewall.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 8, 2011
    Assignee: Applied Nanostructures, Inc.
    Inventor: Ami Chand
  • Publication number: 20110026305
    Abstract: A non-volatile memory cell and associated method of use are disclosed. In accordance with various embodiments, the memory cell includes a switching device and a resistive sense element (RSE) connected in series between first and second control lines. The first control line is supplied with a variable voltage and the second control line is maintained at a fixed reference voltage. A first resistive state of the RSE is programmed by lowering the variable voltage of the first control line below the fixed reference voltage of the second control line to flow a body-drain current through the switching device. A different, second resistive state of the RSE is programmed by raising the variable voltage of the first control line above the fixed reference voltage to flow a drain-source current through the switching device.
    Type: Application
    Filed: October 12, 2010
    Publication date: February 3, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Daniel S. Reed, Yong Lu, Andrew John Carter, Hai Li
  • Publication number: 20110026327
    Abstract: Bit line connections for non-volatile storage devices and methods for fabricating the same are disclosed. At least two different types of bit line connections may be used between memory cells and bit lines. The different types of bit line connections may be structurally different from each other as follows. One type of bit line connection may include a metal pad between an upper via and lower via. Another type of bit line connection may include an upper via and lower via, but does not include the metal pad. Three rows of bit line connections may be used to relax the pitch. For example, two rows of bit line connections on the outside may have the metal pad, whereas bit line connections in the middle row do not have the metal pad.
    Type: Application
    Filed: June 10, 2010
    Publication date: February 3, 2011
    Inventors: Chen-Che Huang, Chun-Ming Wang, Masaaki Higashitani
  • Publication number: 20110019460
    Abstract: A memory circuit includes a plurality of bit lines. A first memory cell and a second memory cell are coupled in series. Each of the first memory cell and the second memory cell is capable of storing a first type datum. The first memory cell and the second memory cell share a first common source/drain (S/D) region. The first common S/D region is electrically isolated from all of the bit lines.
    Type: Application
    Filed: May 20, 2010
    Publication date: January 27, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Wei Wu, Cheng Hung Lee, Li-Chen Chen, Weiyang Jiang
  • Publication number: 20110013443
    Abstract: A mask programmable NOR ROM circuit includes serially connected ROM transistors. A drain of a topmost ROM transistor is connected to a bit line and a source of a bottommost ROM transistor is connected to a source line. A source of one ROM transistor is solely connected with a drain of an immediately adjacent ROM transistor. The ROM transistors are programmed by placing a resist mask having openings for selectively modifying a first threshold voltage level of chosen ROM transistors by implanting a threshold voltage modifying impurity. A selected ROM transistor is read by connecting the source line to a sense amplifier circuit and setting the bit line to a read biasing voltage level. The gate of the selected ROM transistor is set to a moderately high read voltage level. The gates of all unselected ROM transistor is set to a very high read voltage level.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Inventors: Peter Wung Lee, Fu-Chang Hsu
  • Patent number: 7871892
    Abstract: A method for fabricating a buried capacitor structure includes: laminating a first dielectric layer having a capacitor embedded therein with a second dielectric layer to bury the capacitor therebetween; forming a first circuit pattern on a first metal layer of the first dielectric layer and a second circuit pattern on a second metal layer of the second dielectric layer; depositing a first insulating layer and a second insulating layer on the first metal layer and the second metal layer, respectively; electrically connecting a positive electrode end and a negative electrode end of the capacitor to the second metal layer by a positive through-hole and a negative through-hole, thereby manufacturing the buried capacitor structure.
    Type: Grant
    Filed: June 7, 2009
    Date of Patent: January 18, 2011
    Assignee: Kinsus Interconnect Technology Corp.
    Inventors: Chien-Wei Chang, Ting-Hao Lin, Ya-Hsiang Chen, Yu-Te Lu
  • Patent number: 7863159
    Abstract: According to the invention, die shift is reduced or substantially eliminated, by cutting the wafer in two stages. In some embodiments a first wafer cutting procedure is carried out prior to thinning the wafer to the prescribed die thickness; and in other embodiments the wafer is thinned to the prescribed die thickness prior to carrying out a first wafer cutting procedure. The first wafer cutting procedure includes cutting along a first set of streets to a depth greater than the prescribed die thickness and optionally along a second set of streets to a depth less than the die thickness. The result of the first cutting procedure is an array of strips or blocks of die, each including a plurality of connected die, that are less subject to shift than are individual singulated die. In a second wafer cutting procedure the die are singulated by cutting through along the second set of streets.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: January 4, 2011
    Assignee: Vertical Circuits, Inc.
    Inventors: Reynaldo Co, DeAnn Eileen Melcher, Weiping Pan, Grant Villavicencio
  • Publication number: 20100328830
    Abstract: A transient voltage suppressing (TVS) circuit with uni-directional blocking and symmetric bi-directional blocking capabilities integrated with an electromagnetic interference (EMI) filter supported on a semiconductor substrate of a first conductivity type. The TVS circuit integrated with the EMI filter further includes a ground terminal disposed on the surface for the symmetric bi-directional blocking structure and at the bottom of the semiconductor substrate for the uni-directional blocking structure and an input and an output terminal disposed on a top surface with at least a Zener diode and a plurality of capacitors disposed in the semiconductor substrate to couple the ground terminal to the input and output terminals with a direct capacitive coupling without an intermediate floating body region.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Inventor: Madhur Bobde
  • Publication number: 20100314598
    Abstract: A phase change memory device capable of fully discharging bit lines, even while occupying a relatively small area, and a fabricating method thereof are presented. The phase change memory device includes a semiconductor substrate, a word line area, a discharge line area, a switching PN diode, a dummy PN diode, a phase change structure, and a bit line. The word line area is formed in a memory cell area of the semiconductor substrate. The discharge line area is formed in the bit-line discharge area of the semiconductor substrate. The switching PN diode is formed on the word line area. The dummy PN diode is formed on the discharge line area. The phase change structure is formed on the switching PN diode and is electrically connected to the switching diode. The bit line is electrically connected to the phase change structure and the dummy PN diode.
    Type: Application
    Filed: December 11, 2009
    Publication date: December 16, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Hae Chan PARK
  • Publication number: 20100315855
    Abstract: Electronic apparatus, methods of forming the electronic apparatus, and methods of operating the electronic apparatus include a read only memory having a memory array of bit-lines, where the bit-lines are arranged such that each bit-line has a shared arrangement with one or more other bit-lines of the memory array. Each shared arrangement is structured to operably store a plurality of bits.
    Type: Application
    Filed: August 11, 2010
    Publication date: December 16, 2010
    Applicant: Atmel Corporation
    Inventors: Salwa Bouzekri Alami, Lotfi Ben Ammar
  • Publication number: 20100285636
    Abstract: A manufacturing method of a packaging structure of electronic components includes the steps of: providing a substrate including a plurality of electronic components; covering the electronic components disposed on the substrate with a molding body; forming a plurality of pre-cut grooves on the molding body so as to define a plurality of molding units on the molding body; forming an electromagnet barrier layer covering the molding units on the molding units and the pre-cut grooves; and cutting along at least one of the pre-cut grooves deeply down to break the substrate so as to form separately a plurality of packaging structures of the electronic components.
    Type: Application
    Filed: June 26, 2009
    Publication date: November 11, 2010
    Applicant: ACSIP TECHNOLOGY INC.
    Inventor: HUAI-TE CHEN
  • Patent number: 7829435
    Abstract: A GaN-based thin film (thick film) is grown using a metal buffer layer grown on a substrate. (a) A metal buffer layer (210) made of, for example, Cr or Cu is vapor-deposited on a sapphire substrate (120). (b) A substrate obtained by vapor-depositing the metal buffer layer (210) on the sapphire substrate (120) is nitrided in an ammonia gas ambient, thereby forming a metal nitride layer (212). (c) A GaN buffer layer (222) is grown on the nitrided metal buffer layers (210, 212). (d) Finally, a GaN single-crystal layer (220) is grown. This GaN single-crystal layer (220) can be grown to have various thicknesses depending on the objects. A freestanding substrate can be fabricated by selective chemical etching of the substrate fabricated by the above steps. It is also possible to use the substrate fabricated by the above steps as a GaN template substrate for fabricating a GaN-based light emitting diode or laser diode.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: November 9, 2010
    Assignees: Tohoku Techno Arch Co., Ltd., Furukawa Co., Ltd., Mitsubishi Chemical Corporation, Dowa Holdings Co., Ltd., Epivalley Co., Ltd., Wavesquare Inc.
    Inventors: Takafumi Yao, Meoung-Whan Cho
  • Publication number: 20100264465
    Abstract: An integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in semiconductor material with one crystal orientation and the SRAM cells are formed in a second semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in a top semiconductor layer with one crystal orientation and the SRAM cells are formed in an epitaxial semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the SRAM cells are formed in a top semiconductor layer with one crystal orientation and the logic transistors are formed in an epitaxial semiconductor layer with another crystal orientation.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 21, 2010
    Applicant: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Publication number: 20100261318
    Abstract: Programmable fuse-type through silicon vias (TSVs) in silicon chips are provided with non-programmable TSVs in the same chip. The programmable fuse-type TSVs may employ a region within the TSV structure having sidewall spacers that restrict the cross-sectional conductive path of the TSV adjacent a chip surface contact pad. Application of sufficient current by programming circuitry causes electromigration of metal to create a void in the contact pad and, thus, an open circuit. Programming may be carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Applicant: International Business Machines Corporation
    Inventors: Kai Di Feng, Louis Lu-Chen Hsu, Ping-Chuan Wang, Zhijian Yang
  • Publication number: 20100261317
    Abstract: A plurality of non-volatile storage elements on a common active layer are offset from neighbor non-volatile storage elements. This offsetting of non-volatile storage elements helps reduce interference from neighbor non-volatile storage elements. A method of manufacture is also described for fabricating the offset non-volatile storage elements.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Inventors: Jeffrey W. Lutze, Dana Lee
  • Publication number: 20100259960
    Abstract: A three-dimensional array especially adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 14, 2010
    Inventor: George Samachisa
  • Patent number: 7811943
    Abstract: A process is described for producing silicon carbide crystals having increased minority carrier lifetimes. The process includes the steps of heating and slowly cooling a silicon carbide crystal having a first concentration of minority carrier recombination centers such that the resultant concentration of minority carrier recombination centers is lower than the first concentration.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: October 12, 2010
    Assignee: Cree, Inc.
    Inventors: Calvin H. Carter, Jr., Jason R. Jenny, David P. Malta, Hudson M. Hobgood, Valeri F. Tsvetkov, Mrinal K. Das
  • Publication number: 20100252906
    Abstract: A method for manufacturing a semiconductor device including a thin film device unit including a TFT, and a peripheral device unit provided around the thin film device unit and including a semiconductor element, includes a first step of preparing a substrate, a second step of bonding the peripheral device unit directly to the substrate, and a third step of forming the thin film device unit on the substrate to which the peripheral device unit is bonded.
    Type: Application
    Filed: July 24, 2008
    Publication date: October 7, 2010
    Inventors: Kazuhide Tomiyasu, Yutaka Takafuji, Yasumori Fukushima, Kazuo Nakagawa
  • Patent number: 7804708
    Abstract: An integrated circuit including an array of memory cells and method. In one embodiment, each memory cell includes a resistively switching memory element and a selection diode for selecting one cell from the plurality of memory cells. The memory element is coupled with its top to a first selection line and with its bottom side to the selection diode, the diode further being coupled to the bottom side of a second selection line.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 28, 2010
    Assignee: Qimonda AG
    Inventors: Ulrike Gruening-von Schwerin, Lothar Risch, Peter Baars, Klaus Muemmler, Stefan Tegen, Thomas Happ
  • Publication number: 20100238697
    Abstract: Disclosed are methods, systems and devices including local data lines. In some embodiments, the device includes a local data line connected to a plurality of access devices, at least a portion of a capacitor plate connected to the plurality of access devices, and a global data line connected to the local data line by the capacitor plate.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 23, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Publication number: 20100237320
    Abstract: A nonvolatile semiconductor memory device includes a memory cell array where a plurality of memory cell layers having a plurality of first and second wires which cross each other and a memory cell provided at each intersection of these first and second wires are laminated on top of each other, wherein the memory cells have a variable resistance element and a non-ohmic element laminated in the direction in which the memory cell layers are laminated and tapered in such a manner that the area in a cross section gradually becomes smaller from the bottom memory cell layer towards the top memory cell layer, and the variable resistance element and the non-ohmic element in the memory cells in a certain memory cell layer are laminated in the same order as the variable resistance element and the non-ohmic element of the memory cells in another memory cell layer.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 23, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Nagashima
  • Publication number: 20100231256
    Abstract: A cell based design layout of an application specific integrated circuit (ASIC) having a function has reduceddecreased power leakage because functionally unconnected additional cells or spare cells of the integrated design layout are unconnected to the power supplies Vdd and Vss.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 16, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Siddhartha Jain, Gaurav Agarwal, Ankit Desai, Anurag Sharma
  • Publication number: 20100226195
    Abstract: A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as bit lines which can be coupled through decoding circuits to sense amplifiers. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of conductive lines arranged as word lines which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. The conductive lines conform to the surface of the stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the conductive strips on the stacks and the conductive lines. The memory elements are programmable, like the anti-fuses or charge trapping structures. The 3D memory is made using only two critical masks for multiple layers.
    Type: Application
    Filed: January 25, 2010
    Publication date: September 9, 2010
    Applicant: Macronix International Co., Ltd.
    Inventor: Hang-Ting Lue
  • Publication number: 20100224979
    Abstract: A method for manufacturing of a stacked integrated circuit package system includes: providing a base integrated circuit package having a base encapsulation with a cavity therein and a base interposer exposed by the cavity; mounting an intermediate integrated circuit package over the base interposer; and mounting a top integrated circuit package over the intermediate integrated circuit package.
    Type: Application
    Filed: May 19, 2010
    Publication date: September 9, 2010
    Inventors: Flynn Carson, Jong-Woo Ha, BumJoon Hong, SeongMin Lee
  • Publication number: 20100221893
    Abstract: Provided is a method for separating a semiconductor wafer into individual semiconductor dies. The method for separating the semiconductor wafer, among other steps, may include implanting an impurity into regions of a semiconductor wafer proximate junctions where semiconductor dies join one another, the impurity configured to disrupt bonds in the semiconductor wafer proximate the junctions and lead to weakened regions. The method for separating the semiconductor wafer may further include separating the semiconductor wafer having the impurity into individual semiconductor dies along the weakened regions.
    Type: Application
    Filed: November 16, 2009
    Publication date: September 2, 2010
    Applicant: AGERE SYSTEMS INC.
    Inventors: Edward B. Harris, Kurt G. Steiner
  • Publication number: 20100221875
    Abstract: Provided are semiconductor integrated circuit (IC) devices including gate patterns having a step difference therebetween and a connection line interposed between the gate patterns. The semiconductor IC device includes a semiconductor substrate including a peripheral active region, a cell active region, and a device isolation layer. Cell gate patterns are disposed on the cell active region and the device isolation layer. A peripheral gate pattern is disposed on the peripheral active region. A cell electrical node is disposed on the cell active region adjacent to the cell gate patterns. Peripheral electrical nodes are disposed on the peripheral active region adjacent to the peripheral gate pattern. Connection lines are disposed on the cell gate patterns disposed on the device isolation layer. The connection lines are connected between the cell gate patterns and the peripheral gate pattern.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 2, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Bong-Soo Kim, Hyeong-Sun Hong, Soo-Ho Shin, Ho-In Ryu
  • Publication number: 20100216284
    Abstract: In a multiport SRAM memory cell of the present invention, an access transistor of a first port is disposed in a p-type well, and an access transistor of a second port is disposed in a p-type well. The gates of all of transistors disposed in a memory cell extend in the same direction. With the configuration, a semiconductor memory device having a low-power consumption type SRAM memory cell with an increased margin of variations in manufacturing, by which a bit line can be shortened in a multiport SRAM memory cell or an associative memory, can be obtained.
    Type: Application
    Filed: May 3, 2010
    Publication date: August 26, 2010
    Applicant: Renesas Technology Corp.
    Inventor: Koji NII
  • Publication number: 20100210071
    Abstract: A method of manufacturing a semiconductor device. The method includes providing a metal carrier, attaching chips to the carrier, and applying a metal layer over the chips and the metal carrier to electrically couple the chips to the metal carrier. The metal carrier is segmented, after applying the metal layer, to obtain metal contact elements.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: Infineon Technologies AG
    Inventors: Joachim Mahler, Edward Fuergut, Manfred Mengel
  • Publication number: 20100210077
    Abstract: Some embodiments of the invention provide configurable integrated circuits (“IC's”) with configurable node arrays. In some embodiments, the configurable node array includes numerous (e.g., 50, 100, etc.) configurable nodes arranged in several rows and columns. This array also includes several direct offset connections, where each particular direct offset connection connects two nodes that are neither in the same column nor in the same row in the array. In some embodiments, at least some direct offset connections connect pairs of nodes that are separated in the array by more than one row and at least one column, or by more than one column and at least one row. Some embodiments establish a direct connection by (1) a set of wire segments that traverse through a set of the IC's wiring layers, and (2) a set of vias when two or more wiring layers are involved. In some embodiments, some of the direct connections have intervening circuits (e.g.
    Type: Application
    Filed: May 3, 2010
    Publication date: August 19, 2010
    Inventors: Andre Rohe, Steven Teig
  • Publication number: 20100210075
    Abstract: Techniques for providing a source line plane are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for providing a source line plane. The apparatus may comprise a source line plane coupled to at least one constant voltage source. The apparatus may also comprise a plurality of memory cells arranged in an array of rows and columns, each memory cell including one or more memory transistors. Each of the one or more memory transistors may comprise a first region coupled to the source line plane, a second region coupled to a bit line, a body region disposed between the first region and the second region, wherein the body region may be electrically floating, and a gate coupled to a word line and spaced apart from, and capacitively coupled to, the body region.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 19, 2010
    Applicant: Innovative Silicon ISi SA
    Inventor: Betina HOLD
  • Publication number: 20100210076
    Abstract: A memory circuit arrangement and fabrication method thereof are presented in which the parts of the memory circuit arrangement are situated on two different substrates. An integrated memory cell array is situated on one substrate. An integrated control circuit that controls access to the memory cells is situated on the other (logic circuit) substrate. The control circuit controls sequences when reading, writing or erasing content of a memory cell. The logic circuit substrate also contains a CPU and encryption coprocessor. The memory circuit contains a sense amplifier, with the aid of which the memory state of a memory cell can be determined, and a decoding circuit that selects a word or bit line.
    Type: Application
    Filed: May 3, 2010
    Publication date: August 19, 2010
    Inventors: Wolfgang Gruber, Ronald Kakoschke, Thomas Schwetzer, Dominik Wegertseder
  • Publication number: 20100188879
    Abstract: A cross-point semiconductor memory device includes: a plurality of first wirings extending in a first direction; a plurality of second wirings positioned on a layer different from the first wirings to extend in a second direction different from the first direction; and memory parts provided in overlap areas of the first wirings and the second wirings, wherein the odd-numbered first wirings and the even-numbered first wirings are arranged on different insulating interlayers in an up-down direction.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 29, 2010
    Applicant: Sony Corporation
    Inventor: Masayoshi Sasaki
  • Patent number: 7763969
    Abstract: An embedded semiconductor chip structure and a method for fabricating the same are proposed. The structure comprises: a carrier board, therewith a plurality of through openings formed in the carrier board, and through trenches surrounding the through openings in the same; a plurality of semiconductor chips received in the through openings of the carrier board. Subsequently, cutting is processed via the through trenches. Thus, the space usage of the circuit board and the layout design are more efficient. Moreover, shaping time is also shortened.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: July 27, 2010
    Assignee: Phoenix Precision Technology Corporation
    Inventors: Zhao-Chong Zeng, Shi-Ping Hsu
  • Publication number: 20100184258
    Abstract: A method and an apparatus for manufacturing a memory cell having a nonvolatile resistive memory element with a limited size active area. The method comprises a first step of providing a dielectric volume and forming a plug opening within the dielectric volume. A recessed plug of a conductive material is then formed within a lower portion of the opening and a dielectric spacer is formed along the sidewalls of an upper portion of the opening. The spacer is cylindrical and has a central hole. A contact plug is subsequently formed within the central hole, the contact plug electrically coupled to the recessed plug. The contact plug can include a memory element or an additional memory element can be applied over the contact plug.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Applicant: ROUND ROCK RESEARCH LLC
    Inventor: Steven T. Harshfield
  • Publication number: 20100176502
    Abstract: A wafer level vertical diode package structure includes a first semiconductor layer, a second semiconductor layer, an insulative unit, a first conductive structure, and a second conductive structure. The second semiconductor layer is connected with one surface of the first semiconductor layer. The insulative unit is disposed around a lateral side of the first semiconductor layer and a lateral side of the second semiconductor layer. The first conductive structure is formed on a top surface of the first semiconductor layer and on one lateral side of the insulative layer. The second conductive structure is formed on a top surface of the second semiconductor layer and on another opposite lateral side of the insulative layer.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Inventors: Bily Wang, Sung-Yi Hsiao, Jack Chen
  • Publication number: 20100176422
    Abstract: A semiconductor memory device includes a semiconductor substrate; a memory cell array on the semiconductor substrate, the memory cell array comprising a plurality of memory cells capable of electrically storing data; a sense amplifier configured to detect the data stored in at least one of the memory cells; a cell source driver electrically connected to source side terminals of the memory cells and configured to supply a source potential to at least one of the source side terminals of the memory cells; a first wiring configured to electrically connect between at least one of the source side terminals of the memory cells and the cell source driver; and a second wiring formed in a same wiring layer as the first wiring, the second wiring being insulated from the first wiring and being electrically connected to the sense amplifier, wherein the first wiring and the second wiring have a plurality of through holes provided at a predetermined interval.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 15, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Koichi FUKUDA, Dai NAKAMURA, Yasuhiko MATSUNAGA
  • Patent number: 7754581
    Abstract: A method for manufacturing a semiconductor device includes the steps of forming first and second semiconductor wafers each including an array of chips and elongate electrodes, forming a groove on scribe lines separating the chips from one another; coating a surface of one of the semiconductor wafers with adhesive; bonding together the semiconductor wafers while allowing the groove to receive therein excessive adhesive; and heating the wafers to connect the elongate electrodes of both the semiconductor wafers.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 13, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Hiroaki Ikeda, Masakazu Ishino, Hiroyuki Tenmei, Naoya Kanda, Yasuhiro Naka, Kunihiko Nishi
  • Patent number: 7754533
    Abstract: A method of manufacturing a semiconductor device. One embodiment provides a carrier. A semiconductor chip is provided with a first face and a second face opposite to the first face. The semiconductor chip is placed over the carrier with the first face facing the carrier. A voltage is applied between the second face of the semiconductor chip and the carrier for attaching the semiconductor chip to the carrier.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: July 13, 2010
    Assignee: Infineon Technologies AG
    Inventor: Ivan Nikitin