Device Having At Least One Potential-jump Barrier Or Surface Barrier, E.g., Pn Junction, Depletion Layer, Carrier Concentration Layer (epo) Patents (Class 257/E21.04)

  • Patent number: 8035159
    Abstract: This invention discloses a semiconductor power device. The trenched semiconductor power device includes a trenched gate, opened from a top surface of a semiconductor substrate, surrounded by a source region encompassed in a body region near the top surface above a drain region disposed on a bottom surface of a substrate. The semiconductor power device further includes an implanting-ion block disposed above the top surface on a mesa area next to the body region having a thickness substantially larger than 0.3 micron for blocking body implanting ions and source ions from entering into the substrate under the mesa area whereby masks for manufacturing the semiconductor power device can be reduced.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: October 11, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Anup Bhalla, François Hébert, Sung-Shan Tai, Sik K Lui
  • Patent number: 8030114
    Abstract: A method to fabricate an image sensor includes providing a semiconductor substrate having a pixel region and a periphery region, forming a light sensing element on the pixel region, and forming at least one transistor in the pixel region and at least one transistor in the periphery region. The step of forming the at least one transistor in the pixel region and periphery region includes forming a gate electrode in the pixel region and periphery region, depositing a dielectric layer over the pixel region and periphery region, partially etching the dielectric layer to form sidewall spacers on the gate electrode and leaving a portion of the dielectric layer overlying the pixel region, and forming source/drain (S/D) regions by ion implantation.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: October 4, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Chuang, Chin-Min Lin, Ken Wen-Chien Fu, Dun-Nian Yaung
  • Publication number: 20110237012
    Abstract: Disclosed is a method for fabricating a high-performance field-effect transistor biosensor for diagnosing cancers using micro conductive polymer nanomaterials funtionalized with anti-VEGF aptamer. Disclosed is a high-sensitivity field-effect transistor biosensor for diagnosing cancers using a micro conductive polymer nanomaterial transistor array including a micro polymer nanomaterial transistor array including a channel region provided with a metal source electrode, a metal drain electrode, a gate and micro polymer nanomaterials, and an anti-VEGF aptamer covalently bound to the surface of the micro polymer nanomaterials constituting the channel region of the micro polymer nanomaterials transistor array, to target VEGF (Vascular endothelial growth factor).
    Type: Application
    Filed: April 23, 2010
    Publication date: September 29, 2011
    Applicant: SNU R&DB FOUNDATION
    Inventors: Jyong Sik JANG, Oh Seok Kwon, Seon Joo Park
  • Publication number: 20110227046
    Abstract: An organic thin film transistor (OTFT) and a metal-insulator-metal (MIM) capacitor using silk protein as a dielectric material, and methods for manufacturing the same are disclosed. The OTFT of the present invention comprises: a substrate; a gate electrode disposed on the substrate; a gate insulating layer containing silk protein, which is disposed on the substrate and covers the gate electrode; an organic semiconductor layer; and a source electrode and a drain electrode, wherein the organic semiconductor layer, the source electrode and the drain electrode are disposed over the gate insulating layer.
    Type: Application
    Filed: April 15, 2010
    Publication date: September 22, 2011
    Inventors: Jenn-Chang Hwang, Chung Hwa Wang, Chao Ying Hsieh
  • Publication number: 20110227064
    Abstract: Thin film transistors including a semiconductor channel disposed between a drain electrode and a source electrode; and a gate insulating layer disposed between the semiconductor channel and a gate electrode wherein the semiconductor channel includes a first metal oxide, the gate insulating layer includes a second metal oxide, and at least one metal of the second metal oxide is the same as at least one metal of the first metal oxide, methods of manufacturing thin film transistors, and semiconductor device including thin film transistors.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Bae Park, Myung-Kwan Ryu, Jong-Baek Seon, Sang-Yoon Lee, Bon-Won Koo
  • Patent number: 8022502
    Abstract: A nonvolatile memory element comprises a first electrode layer (103), a second electrode (107), and a resistance variable layer (106) which is disposed between the first electrode layer (103) and the second electrode layer (107), a resistance value of the resistance variable layer varying reversibly according to electric signals having different polarities which are applied between the electrodes (103), (107), wherein the resistance variable layer (106) has a first region comprising a first oxygen-deficient tantalum oxide having a composition represented by TaOx (0<x<2.5) and a second region comprising a second oxygen-deficient tantalum oxide having a composition represented by TaOy (x<y<2.5), the first region and the second region being arranged in a thickness direction of the resistance variable layer.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: September 20, 2011
    Assignee: Panasonic Corporation
    Inventors: Yoshihiko Kanzawa, Koji Katayama, Satoru Fujii, Shunsaku Muraoka, Koichi Osano, Satoru Mitani, Ryoko Miyanaga, Takeshi Takagi, Kazuhiko Shimakawa
  • Publication number: 20110212626
    Abstract: Disclosed is a substrate processing apparatus, including: a processing chamber for processing a substrate; a substrate rotating mechanism for rotating the substrate; a gas supply unit for supplying gas to the substrate, at least two kinds of gases A and B being alternately supplied a plurality of times to form a desired film on the substrate; and a controller for controlling a rotation period of the substrate or a gas supply period defined as a time period between an instant when the gas A is made to flow and an instant when the gas A is made to flow next time such that the rotation period and the gas supply period are not brought into synchronization with each other at least while the alternate gas supply is carried out predetermined times.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 1, 2011
    Inventors: Masanori SAKAI, Tomohiro YOSHIMURA
  • Publication number: 20110193194
    Abstract: Proposed are thin film MIM capacitors with which deterioration of insulating properties and leakage current properties can be sufficiently inhibited. Also proposed is a manufacturing method for the thin film MIM capacitors. For the thin film MIM capacitor (1), a lower electrode (3), a base metal thin film (4), the dielectric thin film (5) and the upper electrode (6) are formed to approximately the same area. The lower electrode (3) has a configuration that differs from the other films to form a part for external connection. The side surface of the base metal thin film (4), the dielectric thin film (5), and the upper electrode (6) are covered with a base metal oxide (7) that comprises the same metal atoms as the base metal thin film (4).
    Type: Application
    Filed: October 26, 2009
    Publication date: August 11, 2011
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Tomoyuki Takahashi, Kentarou Morito, Yuichi Sasajima, Yoshinari Take
  • Patent number: 7994011
    Abstract: A method of manufacturing a nonvolatile memory device having a three-dimensional memory device includes alternately stacking a plurality of first and second material layers having a different etching selectivity on a semiconductor substrate; forming an opening penetrating the plurality of first and second material layers; removing the first material layers exposed by the opening to form extended portions extending in a direction perpendicular to the semiconductor substrate from the opening; conformally forming a charge storage layer along a surface of the opening and the extended portions; and removing the charge storage layer formed on sidewalls of the second material layers to locally form the charge storage layer patterns in the extended portions.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Imsoo Park, Young-Hoo Kim, Changki Hong, Jaedong Lee, Daehong Eom, Sung-Jun Kim
  • Publication number: 20110186446
    Abstract: A method of making a sub-miniature “micro-chip” oxygen sensor is provided where multiple sensor elements are applied to a dielectric ceramic substrate consisting of a heater pattern, followed by a dielectric layer. Intermeshing electrodes are then applied either over the heater pattern/dielectric layers or on the opposite side of the substrate. The space between the intermeshing electrodes is filled with an n-type or p-type high temperature semiconductor which is covered by a porous protection layer. After singulation (dicing), the sensor element is assembled having conductors applied to the contact pads on the element and is packaged in an assembly for introduction to the exhaust stream of a combustion process. A large step-wise change in the resistance of the element takes place as a result of changes in oxygen content in the exhaust whereby one can determine if the exhaust is rich or lean for use in an engine management or combustion management systems for emissions control.
    Type: Application
    Filed: December 29, 2010
    Publication date: August 4, 2011
    Applicant: FOSAAEN TECHNOLOGIES, LLC
    Inventor: Ken Ervin Fosaaen
  • Publication number: 20110186818
    Abstract: A graphene substrate is doped with one or more functional groups to form an electronic device.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 4, 2011
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Clarence T. Tegreene, Tatsushi Toyokuni, Richard N. Zare
  • Patent number: 7989225
    Abstract: A method for detaching a first material layer from a second material layer includes following steps. Firstly, a high-magnetic-permeability material layer is formed on a first material layer. Secondly, a second material layer is formed on the high-magnetic-permeability material layer. Thirdly, the first and second material layers are cooled such that the first and second material layers shrink, wherein the first and second material layers are low-magnetic-permeability materials. Finally, the high-magnetic-permeability material layer is heated by applying a high-frequency radiofrequency electromagnetic wave thereto such that the high-magnetic-permeability material layer expands, thus detaching the first material layer from the second material layer.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 2, 2011
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventor: Shih-Cheng Huang
  • Publication number: 20110180783
    Abstract: A method of providing miniaturized size down to nanoscale electronic materials, which may be easily incorporated into the future ever-scaling down power electronics, microelectronics and nanoelectronics device systems, is disclosed. A linear or nonlinear nanoparticle (nanowire) junction design that allows precise controllability over an electronic device (e.g., a varistor) performance, which is typically difficult for the traditional sintered bulk varistor, is also disclosed. A localized doping and chemical modulation, across junctions allows flexible and tunable design over the nanoscale grain boundary band engineering is further disclosed. Furthermore, a method of operating memory, using electrostatic potential modulated coding and decoding across periodic nanoparticle grain boundary linearly, is also disclosed.
    Type: Application
    Filed: March 13, 2009
    Publication date: July 28, 2011
    Inventor: Pu-Xian Gao
  • Publication number: 20110171758
    Abstract: A method for reclamation of scrap materials during the formation of Group III-V materials by metal-organic chemical vapor deposition (MOCVD) processes and/or hydride vapor phase epitaxial (HVPE) processes is provided. More specifically, embodiments described herein generally relate to methods for repairing or replacing defective films or layers during the formation of devices formed by these materials. By periodic testing of the layers during the formation process, low-quality layers that may result in low-quality or defective devices may be detected prior to completion of the device. These low-quality layers may be partially or completely removed and redeposited to reclaim the substrate and any remaining high-quality layers that were previously deposited under the low-quality layer.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JIE SU, OLGA KRYLIOUK
  • Publication number: 20110156179
    Abstract: An integrated circuit containing a capacitive microphone with a back side cavity located within the substrate of the integrated circuit. Access holes may be formed through a dielectric support layer at the surface of the substrate to provide access for etchants to the substrate to form the back side cavity. The back side cavity may be etched after a fixed plate and permeable membrane of the capacitive microphone are formed by providing etchants through the permeable membrane and through the access holes to the substrate.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Wei-Yan Shih
  • Publication number: 20110159616
    Abstract: A method for making a light emitting diode is provided, which includes first providing a light emitting diode chip. The light emitting diode chip includes a substrate and a p-type semiconductor layer, an active layer and an n-type semiconductor layer sequentially formed on the substrate. And then sections with different resistance are formed in the n-type semiconductor layer by implanting ions into the n-type semiconductor layer in an ion implanter. Finally, an electrode pad is deposited on the n-type semiconductor layer. The electrical resistances of the sections increase following an increase of a distance from the electrode pad to the sections.
    Type: Application
    Filed: September 17, 2010
    Publication date: June 30, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIH-CHEN LAI
  • Publication number: 20110159617
    Abstract: A method of fabricating a color laser, comprising growing a first thin layer of ionic crystal on a substrate. The crystal can comprise many types of ionic crystals, such as sodium chloride or potassium chloride. A second thin layer of a different type of ionic crystal can be deposited above the first ionic crystal layer, such as lithium fluoride or sodium fluoride. An inert metal layer can be deposited between the first and second layers of ionic crystal and above the second layer of ionic crystal. When the first and second ionic crystal layers are radiated with gamma rays, they form color centers at the spots radiated. Because of the difference in crystalline properties of the two different ionic crystal centers, their color centers have different wavelengths. Each of the ionic crystal layers emit light at different characteristic wavelengths when illuminated at their unique absorption frequencies, and can be made to lase separately.
    Type: Application
    Filed: March 10, 2011
    Publication date: June 30, 2011
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: ANTHONY D. KURTZ, Joseph R. VanDeWeert
  • Publication number: 20110158439
    Abstract: A capacitive microphone transducer integrated into an integrated circuit includes a fixed plate and a membrane formed in or above an interconnect region of the integrated circuit. A process of forming an integrated circuit containing a capacitive microphone transducer includes etching access trenches through the fixed plate to a region defined for the back cavity, filling the access trenches with a sacrificial material, and removing a portion of the sacrificial material from a back side of the integrated circuit.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Brian E. Goodlin, Wei-Yan Shih, Lance W. Barron
  • Publication number: 20110147880
    Abstract: A power semiconductor device, such as a power diode, and a method for producing such a device, are disclosed. The device includes a first layer of a first conductivity type, a second layer of a second conductivity type arranged in a central region on a first main side of the first layer, a third electrically conductive layer arranged on the second layer, and a fourth electrically conductive layer arranged on the first layer at a second main side opposite to the first main side. A junction termination region surrounds the second layer with self-contained sub-regions of the second conductivity type. A spacer region is arranged between the second layer and the junction termination region and includes a self-contained spacer sub-region of the second conductivity type which is electrically disconnected from the second layer.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 23, 2011
    Applicant: ABB Technology AG
    Inventors: Sven MATTHIAS, Arnost Kopta
  • Publication number: 20110151647
    Abstract: Exemplary embodiments of the present invention provide a method of fabricating a semiconductor substrate, the method including forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, etching the substrate using a solution to remove the metallic material layer and a portion of the first semiconductor layer, and forming a cavity in the first semiconductor layer under where the metallic material layer was removed.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 23, 2011
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventor: Shiro Sakai
  • Publication number: 20110150017
    Abstract: A relaxed InGaN template employs a GaN or InGaN nucleation layer grown at low temperatures on a conventional base layer (e.g., sapphire). The nucleation layer is typically very rough and multi-crystalline. A single-crystal InGaN buffer layer is then grown at normal temperatures. Although not necessary, the buffer layer is typically undoped, and is usually grown at high pressures to encourage planarization and to improve surface smoothness. A subsequent n-doped cap layer can then be grown at low pressures to form the n-contact of a photonic or electronic device. In some cases, a wetting layer—typically low temperature AlN—is grown prior to the nucleation layer. Other templates, such as AlGaN on Si or SiC, are also produced using the method of the present invention.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Christopher L. Chua, Zhihong Yang, Andre Strittmatter, Mark R. Teepe
  • Patent number: 7964932
    Abstract: A rectenna capable of power conversion from electromagnetic (EM) waves of high frequencies is provided. In one embodiment, a rectenna element generates currents from two sources—based upon the power of the incident EM wave and from an n-type semiconductor, or another electron source attached to a maximum voltage point of an antenna element. The combined current from both sources increases the power output of the antenna, thereby increasing the detection sensitivity of the antenna of a low power signal. Full wave rectification is achieved using a novel diode connected to a gap in the antenna element of a rectenna element. The diode is conductive at forward bias voltage or reverse bias voltage, and rectifies the antenna signal generated by the desired EM wave received by antenna raise from The rectenna element of the present invention may be used as a building block to create large rectenna arrays.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 21, 2011
    Inventors: Guy Silver, Juinerong Wu
  • Publication number: 20110139248
    Abstract: Solar cells, methods for manufacturing a quantum dot layer for a solar cell, and methods for manufacturing solar cells are disclosed. An example method for manufacturing a quantum dot layer for a solar cell includes providing an electron conductor layer, providing a quantum dot chemical bath deposition solution, controlling the temperature of the quantum dot chemical bath deposition solution to a temperature of about 30° C. or greater, and immersing the electron conductor layer in the quantum dot chemical bath deposition solution for about 1-10 hours. The quantum dot chemical bath deposition solution may include CdSe.
    Type: Application
    Filed: January 20, 2010
    Publication date: June 16, 2011
    Applicant: Honeywell International Inc.
    Inventors: Anna Liu, Zhi Zheng, Linan Zhao, Marilyn Wang
  • Publication number: 20110143523
    Abstract: A manufacturing method for a semiconductor integrated device including forming a second impurity layer of a second conductivity type that is higher in impurity concentration than a second well of the second conductivity type on a first impurity layer of a first conductivity type that is higher in impurity concentration than a first well of the first conductivity type, forming the first well of the first conductivity type on the second impurity layer of the second conductivity type on the first impurity layer of the first conductivity type, the first well being supplied with potential from the first impurity layer of the first conductivity type, and forming the second well of the second conductivity type on the second impurity layer of the second conductivity type on the first impurity layer of the first conductivity type, the second well being supplied with potential from the second impurity layer of the second conductivity type.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Hitoshi Okamoto
  • Patent number: 7955875
    Abstract: Methods of forming a light emitting device include selectively forming a wavelength conversion structure on a light emitting element using stereolithography. Selectively forming the wavelength conversion structure may include covering the light emitting element with a photo-curable liquid polymer containing a luminescent material, and exposing the liquid polymer to light for a time sufficient to at least partially cure the liquid polymer. Multiple layers of polymer can be selectively built up to form a wavelength conversion structure having a custom shape on the light emitting element.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: June 7, 2011
    Assignee: Cree, Inc.
    Inventor: Craig Hardin
  • Publication number: 20110121416
    Abstract: Low temperature, multi-layered, planar microshells for encapsulation of devices such as MEMS and microelectronics. The microshells include a planar perforated pre-sealing layer, below which a non-planar sacrificial layer is accessed, and a sealing layer to close the perforation in the pre-sealing layer after the sacrificial material is removed. In an embodiment, the pre-sealing layer has perforations formed with a damascene process to be self-aligned to the chamber below the microshell. The sealing layer may include a nonhermetic layer to physically occlude the perforation and a hermetic layer over the nonhermetic occluding layer to seal the perforation. In a particular embodiment, the hermetic layer is a metal which is electrically coupled to a conductive layer adjacent to the microshell to electrically ground the microshell.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Inventors: Emmanuel P. Quevy, Pezhman Monadgemi, Roger T. Howe
  • Publication number: 20110121415
    Abstract: Low temperature, multi-layered, planar microshells for encapsulation of devices such as MEMS and microelectronics. The microshells include a planar perforated pre-sealing layer, below which a non-planar sacrificial layer is accessed, and a sealing layer to close the perforation in the pre-sealing layer after the sacrificial material is removed. In an embodiment, the pre-sealing layer has perforations formed with a damascene process to be self-aligned to the chamber below the microshell. The sealing layer may include a nonhermetic layer to physically occlude the perforation and a hermetic layer over the nonhermetic occluding layer to seal the perforation. In a particular embodiment, the hermetic layer is a metal which is electrically coupled to a conductive layer adjacent to the microshell to electrically ground the microshell.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Inventors: Emmanuel P. Quevy, Pezhman Monadgemi, Roger T. Howe
  • Publication number: 20110121283
    Abstract: A chemical vapor deposition method such as an atomic-layer-deposition method for forming a patterned thin film includes applying a deposition inhibitor material to a substrate. The deposition inhibitor material is a hydrophilic polymer that is a neutralized acid having a pKa of 5 or less, wherein at least 90% of the acid groups are neutralized. The deposition inhibitor material is patterned simultaneously or subsequently to its application to the substrate, to provide selected areas of the substrate effectively not having the deposition inhibitor material. A thin film is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Inventor: David H. Levy
  • Publication number: 20110124148
    Abstract: Provided are methods of forming a nano structure and method of forming a solar cell using the same. The method of forming the nano structure includes: preparing a template; ionizing a surface of the template; forming an oxide layer enclosing the template on the surface of the template; and removing the template.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 26, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mi Hee JUNG, Hogyeong Yun, Mangu Kang, Sangee Kim, Hunkyun Pak
  • Publication number: 20110121412
    Abstract: Low temperature, multi-layered, planar microshells for encapsulation of devices such as MEMS and microelectronics. The microshells include a planar perforated pre-sealing layer, below which a non-planar sacrificial layer is accessed, and a sealing layer to close the perforation in the pre-sealing layer after the sacrificial material is removed. In an embodiment, the pre-sealing layer has perforations formed with a damascene process to be self-aligned to the chamber below the microshell. The sealing layer may include a nonhermetic layer to physically occlude the perforation and a hermetic layer over the nonhermetic occluding layer to seal the perforation. In a particular embodiment, the hermetic layer is a metal which is electrically coupled to a conductive layer adjacent to the microshell to electrically ground the microshell.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Inventors: Emmanuel P. Quevy, Pezhman Monadgemi, Roger T. Howe
  • Patent number: 7943472
    Abstract: Cobalt silicide (CoSi2) Schottky diodes fabricated per the current art suffer from excess leakage currents in reverse bias. In this invention, an floating p-type region encircles each anode of a CoSi2 Schottky diode comprising of one or more CoSi2 anodes. The resulting p-n junction forms a depletion region under the Schottky junction that reduces leakage current through the Schottky diodes in reverse bias operation.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 17, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Eugen Pompiliu Mindricelu
  • Publication number: 20110108729
    Abstract: A THz wave detector including a thermal isolation structure in which a supporting unit containing electrode wirings connected to a readout circuit formed in an substrate supports a temperature detecting unit connected to the electrode wirings so that one face of said temperature detecting unit and said substrate are opposed to each other with a predetermined gap, wherein a reflective film reflecting THz waves is formed on the substrate so as to face the temperature detecting unit, an absorbing film absorbing the THz waves is formed on the temperature detecting unit, the reflective film and the temperature detecting unit form an optical resonant structure, the distance between the reflective film and the temperature detecting unit is set to 8 to 14 ?m, and the sheet resistance of the absorbing film is set to 100 to 200 ?/square.
    Type: Application
    Filed: October 14, 2010
    Publication date: May 12, 2011
    Inventor: NAOKI ODA
  • Publication number: 20110108944
    Abstract: A nitride semiconductor free-standing substrate includes a diameter of not less than 40 mm, a thickness of not less than 100 ?m, a dislocation density of not more than 5×106/cm2, an impurity concentration of not more than 4×1019/cm3, and a nanoindentation hardness of not less than 19.0 GPa at a maximum load in a range of not less than 1 mN and not more than 50 mN.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 12, 2011
    Applicant: HITACHI CABLE, LTD.
    Inventor: Hajime Fujikura
  • Publication number: 20110108899
    Abstract: A method of manufacturing a patterned ferroelectric polymer memory medium is disclosed, which includes forming an electrode on a substrate; forming a ferroelectric polymer thin film on the electrode; and patterning and orienting the polymer thin film into a plurality of nanostructures by embossing techniques. Also disclosed are two methods which include forming nanofeatures in an interlayer dielectric (ILD) layer deposited on a substrate; forming a ferroelectric polymer thin film on the ILD layer in the nanofeatures; and patterning and orienting the polymer thin film into a plurality of nanostructures by pressing. The patterning process followed by an annealing process promotes specific crystal orientation, which significantly reduces the operation voltage, and increases the signal-to-noise ratio. The invention also covers devices made of a ferroelectric polymer layer oriented by such an embossing method and the use of such devices at a coercive field of 10 MV/m or less.
    Type: Application
    Filed: May 29, 2009
    Publication date: May 12, 2011
    Inventors: Alain Jonas, Zhijun Hu
  • Publication number: 20110108793
    Abstract: The present invention relates to asymmetric molecular bilayers for the use in the junctions of electronic devices, such as crossbar junctions, comprising the general structure ET-MT( )MB-EB, wherein ET and EB denote a top and a bottom electrode, MT and MB represent functional molecules both forming a self-assembled monolayer (SAM) on said top or bottom electrode, and the symbol ( ) denotes a non-covalent interaction between the two monolayers, resulting in a molecular bilayer, sandwiched between the two electrodes. The electrodes are solid state electrodes and stationary with respect to each other. The present invention also relates to a method of producing such assemblies.
    Type: Application
    Filed: April 22, 2009
    Publication date: May 12, 2011
    Applicant: Sony Corporation
    Inventors: Jurina Wessels, Florian Von Wrochem, Bjoern Luessem, Deqing Gao, Heinz-Georg Nothofer, William E. Ford
  • Publication number: 20110101369
    Abstract: This invention discloses a gallium nitride based semiconductor power device disposed in a semiconductor substrate. The power device comprises a termination area disposed at a peripheral area of the semiconductor power device comprises a termination structure having at least a guard ring disposed in a trench filled with doped gallium-based epitaxial layer therein.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventor: Tinggang Zhu
  • Publication number: 20110101501
    Abstract: A semiconductor device includes first semiconductor zones of a first conductivity type having a first dopant species of the first conductivity type and a second dopant species of a second conductivity type different from the first conductivity type. The semiconductor device also includes second semiconductor zones of the second conductivity type including the second dopant species. The first and second semiconductor zones are alternately arranged in contact with each other along a lateral direction extending in parallel to a surface of a semiconductor body. One of the first and second semiconductor zones constitute drift zones and a diffusion coefficient of the second dopant species is at least twice as large as the diffusion coefficient of the first dopant species. A concentration profile of the first dopant species along a vertical direction perpendicular to the surface of the semiconductor body includes at least two maxima.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Hans-Joachim Schulze
  • Publication number: 20110100411
    Abstract: The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or “nanomembranes.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Inventors: Max G. Lagally, Paul G. Evans, Clark S. Riz
  • Publication number: 20110101344
    Abstract: A semiconductor device which comprises a channel layer formed from a semiconductor channel component material in the form of crystalline micro particles, micro rods, crystalline nano particles, or nano rods, and doped with a semiconductor dopant.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Applicants: PANASONIC CORPORATION, CAMBRIDGE ENTERPRISE LTD.
    Inventors: Kiyotaka MORI, Henning SIRRINGHAUS
  • Publication number: 20110095384
    Abstract: A SOI-based MEMS device has a base layer, a device layer, and an insulator layer between the base layer and the device layer. The device also has a deposited layer having a portion that is spaced from the device layer. The device layer is between the insulator layer and the deposited layer.
    Type: Application
    Filed: January 6, 2011
    Publication date: April 28, 2011
    Applicant: ANALOG DEVICES, INC.
    Inventors: Thomas Kieran Nunan, Timothy J. Brosnihan
  • Publication number: 20110095389
    Abstract: An optoelectronic device comprising an optically active layer that includes a plurality of domes is presented. The plurality of domes is arrayed in two dimensions having a periodicity in each dimension that is less than or comparable with the shortest wavelength in a spectral range of interest. By virtue of the plurality of domes, the optoelectronic device achieves high performance. A solar cell having high energy-conversion efficiency, improved absorption over the spectral range of interest, and an improved acceptance angle is presented as an exemplary device.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 28, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Jia Zhu, Ching-Mei Hsu, Shanhui Fan, Zongfu Yu
  • Publication number: 20110089477
    Abstract: The present invention provides nanostructured MOS capacitor that comprises a nanowire (2) at least partly enclosed by a dielectric layer (5) and a gate electrode (4) that encloses at least a portion of the dielectric layer (5). Preferably the nanowire (2) protrudes from a substrate (12). The gate electrode (4) defines a gated portion (7) of the nanowire (2), which is allowed to be fully depleted when a first predetermined voltage is applied to the gate electrode (4). A method for providing a variable capacitance in an electronic circuit by using such an nanostructured MOS capacitor is also provided. Thanks to the invention it is possible to provide a MOS capacitor having an increased capacitance modulation range. It is a further advantage of the invention to provide a MOS capacitor which has relatively low depletion capacitance compared to prior art MOS capacitances.
    Type: Application
    Filed: June 15, 2009
    Publication date: April 21, 2011
    Applicant: QuNano AB
    Inventor: Lars-Erik Wernersson
  • Publication number: 20110088737
    Abstract: A thermoelectric conversion module which has a P-type thermoelectric conversion material and an N-type thermoelectric conversion material electrically connected to each other. The P-type thermoelectric conversion material and the N-type thermoelectric conversion material are joined with insulating material particles (ceramic spherical particles) interposed therebetween, so as not to be electrically connected to each other.
    Type: Application
    Filed: December 23, 2010
    Publication date: April 21, 2011
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Takanori Nakamura, Shuji Matsumoto
  • Patent number: 7927978
    Abstract: An electronic device comprises a body including a single crystal region on a major surface of the body. The single crystal region has a hexagonal crystal lattice that is substantially lattice-matched to graphene, and a at least one epitaxial layer of graphene is disposed on the single crystal region. In a currently preferred embodiment, the single crystal region comprises multilayered hexagonal BN. A method of making such an electronic device comprises the steps of: (a) providing a body including a single crystal region on a major surface of the body. The single crystal region has a hexagonal crystal lattice that is substantially lattice-matched to graphene, and (b) epitaxially forming a at least one graphene layer on that region. In a currently preferred embodiment, step (a) further includes the steps of (a1) providing a single crystal substrate of graphite and (a2) epitaxially forming multilayered single crystal hexagonal BN on the substrate.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 19, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Loren Neil Pfeiffer
  • Patent number: 7928479
    Abstract: A ferroelectric capacitor is formed over a semiconductor substrate (10), and thereafter, interlayer insulating films (48, 50, 52) covering the ferroelectric capacitor are formed. Next, a contact hole (54) reaching a top electrode (40) is formed in the interlayer insulating films (48, 50, 52). Next, a wiring (58) electrically connected to the top electrode (40) through the contact hole (54) is formed on the interlayer insulating films (48, 50, 52). At the time of forming the top electrode (40), conductive oxide films (40a, 40b) are formed, and then a cap film (40c) composed of a noble metal exhibiting less catalytic action than Pt and having a thickness of 150 nm or less is formed on the conductive oxide films (40a, 40b).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 7927909
    Abstract: A germanium (Ge) photodiode array on a glass substrate is provided with a corresponding fabrication method. A Ge substrate is provided that is either not doped or lightly doped with a first dopant. The first dopant can be either an n or p type dopant. A first surface of the Ge substrate is moderately doped with the first dopant and bonded to a glass substrate top surface. Then, a first region of a Ge substrate second surface is heavily doped with the first dopant. A second region of the Ge substrate second surface is heavily doped with a second dopant, having the opposite electron affinity than the first dopant, forming a pn junction. An interlevel dielectric (ILD) layer is formed overlying the Ge substrate second surface and contact holes are etched in the ILD layer overlying the first and second regions of the Ge substrate second surface. The contact holes are filled with metal and metal pads are formed overlying the contact holes.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: April 19, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Steven R. Droes, John W. Hartzell, Jer-Shen Maa
  • Publication number: 20110086513
    Abstract: Components of a plasma processing apparatus includes a backing member with gas passages attached to an upper electrode with gas passages. To compensate for the differences in coefficient of thermal expansion between the metallic backing member and upper electrode, the gas passages are positioned and sized such that they are misaligned at ambient temperature and substantially concentric at an elevated processing temperature. Non-uniform shear stresses can be generated in the elastomeric bonding material, due to the thermal expansion. Shear stresses can either be accommodated by applying an elastomeric bonding material of varying thickness or using a backing member comprising of multiple pieces.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 14, 2011
    Applicant: Lam Research Corporation
    Inventors: Anthony De La Llera, Allan K. Ronne, Jaehyun Kim, Jason Augustino, Rajinder Dhindsa, Yen-Kun Wang, Saurabh J. Ullal, Anthony J. Norell, Keith Comendant, William M. Denty, JR.
  • Publication number: 20110086498
    Abstract: Structures include a tunneling device disposed over first and second lattice-mismatched semiconductor materials. Process embodiments include forming tunneling devices over lattice-mismatched materials.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 14, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhiyuan Cheng, Calvin Sheen
  • Publication number: 20110062539
    Abstract: To provide a semiconductor device in which the deterioration of the rewrite property is suppressed. In a memory cell region, magnetoresistive elements in a semiconductor magnetic-storage device are formed in an array shape in a mode that the magnetoresistive elements are arranged at portions where digit lines extending in one direction intersect bit lines extending in the direction approximately orthogonal to the digit lines. The digit line and the bit line have such a wiring structure constituted by covering a copper film to be a wiring main body with a cladding layer. One end side of the magnetoresistive element is electrically coupled to the bit line via a top via formed from a non-magnetic material.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 17, 2011
    Inventors: Ryoji MATSUDA, Motoi Ashida, Shuichi Ueno, Shoichi Fukui, Shinya Hirano, Seiji Muranaka, Kazuyuki Omori
  • Publication number: 20110062457
    Abstract: A semiconductor light emitting device including an active layer, a compound semiconductor layer on the active layer, a contact layer on the compound semiconductor layer, and an electrode on the contact layer, where the contact layer is substantially the same size as the electrode.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 17, 2011
    Applicant: SONY CORPORATION
    Inventors: Hiroki Naito, Takahiro Koyama, Kensuke Kojima, Arata Kobayashi, Hiroyuki Okuyama, Makoto Oogane, Takayuki Kawasumi